MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1id Structured version   Visualization version   GIF version

Theorem pj1id 19305
Description: Any element of a direct subspace sum can be decomposed into projections onto the left and right factors. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
pj1f.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1id ((𝜑𝑋 ∈ (𝑇 𝑈)) → 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)))

Proof of Theorem pj1id
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pj1eu.2 . . . . . . 7 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 subgrcl 18760 . . . . . . 7 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
31, 2syl 17 . . . . . 6 (𝜑𝐺 ∈ Grp)
4 eqid 2738 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
54subgss 18756 . . . . . . 7 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
61, 5syl 17 . . . . . 6 (𝜑𝑇 ⊆ (Base‘𝐺))
7 pj1eu.3 . . . . . . 7 (𝜑𝑈 ∈ (SubGrp‘𝐺))
84subgss 18756 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
97, 8syl 17 . . . . . 6 (𝜑𝑈 ⊆ (Base‘𝐺))
103, 6, 93jca 1127 . . . . 5 (𝜑 → (𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)))
11 pj1eu.a . . . . . 6 + = (+g𝐺)
12 pj1eu.s . . . . . 6 = (LSSum‘𝐺)
13 pj1f.p . . . . . 6 𝑃 = (proj1𝐺)
144, 11, 12, 13pj1val 19301 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) ∧ 𝑋 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) = (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
1510, 14sylan 580 . . . 4 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) = (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
16 pj1eu.o . . . . . 6 0 = (0g𝐺)
17 pj1eu.z . . . . . 6 𝑍 = (Cntz‘𝐺)
18 pj1eu.4 . . . . . 6 (𝜑 → (𝑇𝑈) = { 0 })
19 pj1eu.5 . . . . . 6 (𝜑𝑇 ⊆ (𝑍𝑈))
2011, 12, 16, 17, 1, 7, 18, 19pj1eu 19302 . . . . 5 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦))
21 riotacl2 7249 . . . . 5 (∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦) → (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)) ∈ {𝑥𝑇 ∣ ∃𝑦𝑈 𝑋 = (𝑥 + 𝑦)})
2220, 21syl 17 . . . 4 ((𝜑𝑋 ∈ (𝑇 𝑈)) → (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)) ∈ {𝑥𝑇 ∣ ∃𝑦𝑈 𝑋 = (𝑥 + 𝑦)})
2315, 22eqeltrd 2839 . . 3 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) ∈ {𝑥𝑇 ∣ ∃𝑦𝑈 𝑋 = (𝑥 + 𝑦)})
24 oveq1 7282 . . . . . . 7 (𝑥 = ((𝑇𝑃𝑈)‘𝑋) → (𝑥 + 𝑦) = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))
2524eqeq2d 2749 . . . . . 6 (𝑥 = ((𝑇𝑃𝑈)‘𝑋) → (𝑋 = (𝑥 + 𝑦) ↔ 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦)))
2625rexbidv 3226 . . . . 5 (𝑥 = ((𝑇𝑃𝑈)‘𝑋) → (∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ↔ ∃𝑦𝑈 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦)))
2726elrab 3624 . . . 4 (((𝑇𝑃𝑈)‘𝑋) ∈ {𝑥𝑇 ∣ ∃𝑦𝑈 𝑋 = (𝑥 + 𝑦)} ↔ (((𝑇𝑃𝑈)‘𝑋) ∈ 𝑇 ∧ ∃𝑦𝑈 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦)))
2827simprbi 497 . . 3 (((𝑇𝑃𝑈)‘𝑋) ∈ {𝑥𝑇 ∣ ∃𝑦𝑈 𝑋 = (𝑥 + 𝑦)} → ∃𝑦𝑈 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))
2923, 28syl 17 . 2 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃𝑦𝑈 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))
30 simprr 770 . . 3 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))
313ad2antrr 723 . . . . . 6 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝐺 ∈ Grp)
329ad2antrr 723 . . . . . 6 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑈 ⊆ (Base‘𝐺))
336ad2antrr 723 . . . . . 6 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑇 ⊆ (Base‘𝐺))
34 simplr 766 . . . . . . 7 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑋 ∈ (𝑇 𝑈))
3512, 17lsmcom2 19260 . . . . . . . . 9 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) = (𝑈 𝑇))
361, 7, 19, 35syl3anc 1370 . . . . . . . 8 (𝜑 → (𝑇 𝑈) = (𝑈 𝑇))
3736ad2antrr 723 . . . . . . 7 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → (𝑇 𝑈) = (𝑈 𝑇))
3834, 37eleqtrd 2841 . . . . . 6 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑋 ∈ (𝑈 𝑇))
394, 11, 12, 13pj1val 19301 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑈 ⊆ (Base‘𝐺) ∧ 𝑇 ⊆ (Base‘𝐺)) ∧ 𝑋 ∈ (𝑈 𝑇)) → ((𝑈𝑃𝑇)‘𝑋) = (𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣)))
4031, 32, 33, 38, 39syl31anc 1372 . . . . 5 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → ((𝑈𝑃𝑇)‘𝑋) = (𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣)))
4111, 12, 16, 17, 1, 7, 18, 19, 13pj1f 19303 . . . . . . . . 9 (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
4241ad2antrr 723 . . . . . . . 8 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
4342, 34ffvelrnd 6962 . . . . . . 7 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → ((𝑇𝑃𝑈)‘𝑋) ∈ 𝑇)
4419ad2antrr 723 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑇 ⊆ (𝑍𝑈))
4544, 43sseldd 3922 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → ((𝑇𝑃𝑈)‘𝑋) ∈ (𝑍𝑈))
46 simprl 768 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑦𝑈)
4711, 17cntzi 18935 . . . . . . . . 9 ((((𝑇𝑃𝑈)‘𝑋) ∈ (𝑍𝑈) ∧ 𝑦𝑈) → (((𝑇𝑃𝑈)‘𝑋) + 𝑦) = (𝑦 + ((𝑇𝑃𝑈)‘𝑋)))
4845, 46, 47syl2anc 584 . . . . . . . 8 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → (((𝑇𝑃𝑈)‘𝑋) + 𝑦) = (𝑦 + ((𝑇𝑃𝑈)‘𝑋)))
4930, 48eqtrd 2778 . . . . . . 7 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑋 = (𝑦 + ((𝑇𝑃𝑈)‘𝑋)))
50 oveq2 7283 . . . . . . . 8 (𝑣 = ((𝑇𝑃𝑈)‘𝑋) → (𝑦 + 𝑣) = (𝑦 + ((𝑇𝑃𝑈)‘𝑋)))
5150rspceeqv 3575 . . . . . . 7 ((((𝑇𝑃𝑈)‘𝑋) ∈ 𝑇𝑋 = (𝑦 + ((𝑇𝑃𝑈)‘𝑋))) → ∃𝑣𝑇 𝑋 = (𝑦 + 𝑣))
5243, 49, 51syl2anc 584 . . . . . 6 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → ∃𝑣𝑇 𝑋 = (𝑦 + 𝑣))
53 simpll 764 . . . . . . . 8 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝜑)
54 incom 4135 . . . . . . . . . 10 (𝑈𝑇) = (𝑇𝑈)
5554, 18eqtrid 2790 . . . . . . . . 9 (𝜑 → (𝑈𝑇) = { 0 })
5617, 1, 7, 19cntzrecd 19284 . . . . . . . . 9 (𝜑𝑈 ⊆ (𝑍𝑇))
5711, 12, 16, 17, 7, 1, 55, 56pj1eu 19302 . . . . . . . 8 ((𝜑𝑋 ∈ (𝑈 𝑇)) → ∃!𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣))
5853, 38, 57syl2anc 584 . . . . . . 7 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → ∃!𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣))
59 oveq1 7282 . . . . . . . . . 10 (𝑢 = 𝑦 → (𝑢 + 𝑣) = (𝑦 + 𝑣))
6059eqeq2d 2749 . . . . . . . . 9 (𝑢 = 𝑦 → (𝑋 = (𝑢 + 𝑣) ↔ 𝑋 = (𝑦 + 𝑣)))
6160rexbidv 3226 . . . . . . . 8 (𝑢 = 𝑦 → (∃𝑣𝑇 𝑋 = (𝑢 + 𝑣) ↔ ∃𝑣𝑇 𝑋 = (𝑦 + 𝑣)))
6261riota2 7258 . . . . . . 7 ((𝑦𝑈 ∧ ∃!𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣)) → (∃𝑣𝑇 𝑋 = (𝑦 + 𝑣) ↔ (𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣)) = 𝑦))
6346, 58, 62syl2anc 584 . . . . . 6 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → (∃𝑣𝑇 𝑋 = (𝑦 + 𝑣) ↔ (𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣)) = 𝑦))
6452, 63mpbid 231 . . . . 5 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → (𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣)) = 𝑦)
6540, 64eqtrd 2778 . . . 4 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → ((𝑈𝑃𝑇)‘𝑋) = 𝑦)
6665oveq2d 7291 . . 3 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)) = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))
6730, 66eqtr4d 2781 . 2 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)))
6829, 67rexlimddv 3220 1 ((𝜑𝑋 ∈ (𝑇 𝑈)) → 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wrex 3065  ∃!wreu 3066  {crab 3068  cin 3886  wss 3887  {csn 4561  wf 6429  cfv 6433  crio 7231  (class class class)co 7275  Basecbs 16912  +gcplusg 16962  0gc0g 17150  Grpcgrp 18577  SubGrpcsubg 18749  Cntzccntz 18921  LSSumclsm 19239  proj1cpj1 19240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-minusg 18581  df-sbg 18582  df-subg 18752  df-cntz 18923  df-lsm 19241  df-pj1 19242
This theorem is referenced by:  pj1eq  19306  pj1ghm  19309  pj1lmhm  20362
  Copyright terms: Public domain W3C validator