MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1id Structured version   Visualization version   GIF version

Theorem pj1id 19741
Description: Any element of a direct subspace sum can be decomposed into projections onto the left and right factors. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
pj1f.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1id ((𝜑𝑋 ∈ (𝑇 𝑈)) → 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)))

Proof of Theorem pj1id
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pj1eu.2 . . . . . . 7 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 subgrcl 19171 . . . . . . 7 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
31, 2syl 17 . . . . . 6 (𝜑𝐺 ∈ Grp)
4 eqid 2740 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
54subgss 19167 . . . . . . 7 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
61, 5syl 17 . . . . . 6 (𝜑𝑇 ⊆ (Base‘𝐺))
7 pj1eu.3 . . . . . . 7 (𝜑𝑈 ∈ (SubGrp‘𝐺))
84subgss 19167 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
97, 8syl 17 . . . . . 6 (𝜑𝑈 ⊆ (Base‘𝐺))
103, 6, 93jca 1128 . . . . 5 (𝜑 → (𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)))
11 pj1eu.a . . . . . 6 + = (+g𝐺)
12 pj1eu.s . . . . . 6 = (LSSum‘𝐺)
13 pj1f.p . . . . . 6 𝑃 = (proj1𝐺)
144, 11, 12, 13pj1val 19737 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) ∧ 𝑋 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) = (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
1510, 14sylan 579 . . . 4 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) = (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
16 pj1eu.o . . . . . 6 0 = (0g𝐺)
17 pj1eu.z . . . . . 6 𝑍 = (Cntz‘𝐺)
18 pj1eu.4 . . . . . 6 (𝜑 → (𝑇𝑈) = { 0 })
19 pj1eu.5 . . . . . 6 (𝜑𝑇 ⊆ (𝑍𝑈))
2011, 12, 16, 17, 1, 7, 18, 19pj1eu 19738 . . . . 5 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦))
21 riotacl2 7421 . . . . 5 (∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦) → (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)) ∈ {𝑥𝑇 ∣ ∃𝑦𝑈 𝑋 = (𝑥 + 𝑦)})
2220, 21syl 17 . . . 4 ((𝜑𝑋 ∈ (𝑇 𝑈)) → (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)) ∈ {𝑥𝑇 ∣ ∃𝑦𝑈 𝑋 = (𝑥 + 𝑦)})
2315, 22eqeltrd 2844 . . 3 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) ∈ {𝑥𝑇 ∣ ∃𝑦𝑈 𝑋 = (𝑥 + 𝑦)})
24 oveq1 7455 . . . . . . 7 (𝑥 = ((𝑇𝑃𝑈)‘𝑋) → (𝑥 + 𝑦) = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))
2524eqeq2d 2751 . . . . . 6 (𝑥 = ((𝑇𝑃𝑈)‘𝑋) → (𝑋 = (𝑥 + 𝑦) ↔ 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦)))
2625rexbidv 3185 . . . . 5 (𝑥 = ((𝑇𝑃𝑈)‘𝑋) → (∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ↔ ∃𝑦𝑈 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦)))
2726elrab 3708 . . . 4 (((𝑇𝑃𝑈)‘𝑋) ∈ {𝑥𝑇 ∣ ∃𝑦𝑈 𝑋 = (𝑥 + 𝑦)} ↔ (((𝑇𝑃𝑈)‘𝑋) ∈ 𝑇 ∧ ∃𝑦𝑈 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦)))
2827simprbi 496 . . 3 (((𝑇𝑃𝑈)‘𝑋) ∈ {𝑥𝑇 ∣ ∃𝑦𝑈 𝑋 = (𝑥 + 𝑦)} → ∃𝑦𝑈 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))
2923, 28syl 17 . 2 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃𝑦𝑈 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))
30 simprr 772 . . 3 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))
313ad2antrr 725 . . . . . 6 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝐺 ∈ Grp)
329ad2antrr 725 . . . . . 6 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑈 ⊆ (Base‘𝐺))
336ad2antrr 725 . . . . . 6 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑇 ⊆ (Base‘𝐺))
34 simplr 768 . . . . . . 7 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑋 ∈ (𝑇 𝑈))
3512, 17lsmcom2 19697 . . . . . . . . 9 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) = (𝑈 𝑇))
361, 7, 19, 35syl3anc 1371 . . . . . . . 8 (𝜑 → (𝑇 𝑈) = (𝑈 𝑇))
3736ad2antrr 725 . . . . . . 7 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → (𝑇 𝑈) = (𝑈 𝑇))
3834, 37eleqtrd 2846 . . . . . 6 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑋 ∈ (𝑈 𝑇))
394, 11, 12, 13pj1val 19737 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑈 ⊆ (Base‘𝐺) ∧ 𝑇 ⊆ (Base‘𝐺)) ∧ 𝑋 ∈ (𝑈 𝑇)) → ((𝑈𝑃𝑇)‘𝑋) = (𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣)))
4031, 32, 33, 38, 39syl31anc 1373 . . . . 5 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → ((𝑈𝑃𝑇)‘𝑋) = (𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣)))
4111, 12, 16, 17, 1, 7, 18, 19, 13pj1f 19739 . . . . . . . . 9 (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
4241ad2antrr 725 . . . . . . . 8 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
4342, 34ffvelcdmd 7119 . . . . . . 7 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → ((𝑇𝑃𝑈)‘𝑋) ∈ 𝑇)
4419ad2antrr 725 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑇 ⊆ (𝑍𝑈))
4544, 43sseldd 4009 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → ((𝑇𝑃𝑈)‘𝑋) ∈ (𝑍𝑈))
46 simprl 770 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑦𝑈)
4711, 17cntzi 19369 . . . . . . . . 9 ((((𝑇𝑃𝑈)‘𝑋) ∈ (𝑍𝑈) ∧ 𝑦𝑈) → (((𝑇𝑃𝑈)‘𝑋) + 𝑦) = (𝑦 + ((𝑇𝑃𝑈)‘𝑋)))
4845, 46, 47syl2anc 583 . . . . . . . 8 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → (((𝑇𝑃𝑈)‘𝑋) + 𝑦) = (𝑦 + ((𝑇𝑃𝑈)‘𝑋)))
4930, 48eqtrd 2780 . . . . . . 7 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑋 = (𝑦 + ((𝑇𝑃𝑈)‘𝑋)))
50 oveq2 7456 . . . . . . . 8 (𝑣 = ((𝑇𝑃𝑈)‘𝑋) → (𝑦 + 𝑣) = (𝑦 + ((𝑇𝑃𝑈)‘𝑋)))
5150rspceeqv 3658 . . . . . . 7 ((((𝑇𝑃𝑈)‘𝑋) ∈ 𝑇𝑋 = (𝑦 + ((𝑇𝑃𝑈)‘𝑋))) → ∃𝑣𝑇 𝑋 = (𝑦 + 𝑣))
5243, 49, 51syl2anc 583 . . . . . 6 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → ∃𝑣𝑇 𝑋 = (𝑦 + 𝑣))
53 simpll 766 . . . . . . . 8 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝜑)
54 incom 4230 . . . . . . . . . 10 (𝑈𝑇) = (𝑇𝑈)
5554, 18eqtrid 2792 . . . . . . . . 9 (𝜑 → (𝑈𝑇) = { 0 })
5617, 1, 7, 19cntzrecd 19720 . . . . . . . . 9 (𝜑𝑈 ⊆ (𝑍𝑇))
5711, 12, 16, 17, 7, 1, 55, 56pj1eu 19738 . . . . . . . 8 ((𝜑𝑋 ∈ (𝑈 𝑇)) → ∃!𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣))
5853, 38, 57syl2anc 583 . . . . . . 7 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → ∃!𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣))
59 oveq1 7455 . . . . . . . . . 10 (𝑢 = 𝑦 → (𝑢 + 𝑣) = (𝑦 + 𝑣))
6059eqeq2d 2751 . . . . . . . . 9 (𝑢 = 𝑦 → (𝑋 = (𝑢 + 𝑣) ↔ 𝑋 = (𝑦 + 𝑣)))
6160rexbidv 3185 . . . . . . . 8 (𝑢 = 𝑦 → (∃𝑣𝑇 𝑋 = (𝑢 + 𝑣) ↔ ∃𝑣𝑇 𝑋 = (𝑦 + 𝑣)))
6261riota2 7430 . . . . . . 7 ((𝑦𝑈 ∧ ∃!𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣)) → (∃𝑣𝑇 𝑋 = (𝑦 + 𝑣) ↔ (𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣)) = 𝑦))
6346, 58, 62syl2anc 583 . . . . . 6 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → (∃𝑣𝑇 𝑋 = (𝑦 + 𝑣) ↔ (𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣)) = 𝑦))
6452, 63mpbid 232 . . . . 5 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → (𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣)) = 𝑦)
6540, 64eqtrd 2780 . . . 4 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → ((𝑈𝑃𝑇)‘𝑋) = 𝑦)
6665oveq2d 7464 . . 3 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)) = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))
6730, 66eqtr4d 2783 . 2 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)))
6829, 67rexlimddv 3167 1 ((𝜑𝑋 ∈ (𝑇 𝑈)) → 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wrex 3076  ∃!wreu 3386  {crab 3443  cin 3975  wss 3976  {csn 4648  wf 6569  cfv 6573  crio 7403  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Grpcgrp 18973  SubGrpcsubg 19160  Cntzccntz 19355  LSSumclsm 19676  proj1cpj1 19677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-cntz 19357  df-lsm 19678  df-pj1 19679
This theorem is referenced by:  pj1eq  19742  pj1ghm  19745  pj1lmhm  21122
  Copyright terms: Public domain W3C validator