MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pj1id Structured version   Visualization version   GIF version

Theorem pj1id 19717
Description: Any element of a direct subspace sum can be decomposed into projections onto the left and right factors. (Contributed by Mario Carneiro, 15-Oct-2015.) (Revised by Mario Carneiro, 21-Apr-2016.)
Hypotheses
Ref Expression
pj1eu.a + = (+g𝐺)
pj1eu.s = (LSSum‘𝐺)
pj1eu.o 0 = (0g𝐺)
pj1eu.z 𝑍 = (Cntz‘𝐺)
pj1eu.2 (𝜑𝑇 ∈ (SubGrp‘𝐺))
pj1eu.3 (𝜑𝑈 ∈ (SubGrp‘𝐺))
pj1eu.4 (𝜑 → (𝑇𝑈) = { 0 })
pj1eu.5 (𝜑𝑇 ⊆ (𝑍𝑈))
pj1f.p 𝑃 = (proj1𝐺)
Assertion
Ref Expression
pj1id ((𝜑𝑋 ∈ (𝑇 𝑈)) → 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)))

Proof of Theorem pj1id
Dummy variables 𝑣 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pj1eu.2 . . . . . . 7 (𝜑𝑇 ∈ (SubGrp‘𝐺))
2 subgrcl 19149 . . . . . . 7 (𝑇 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
31, 2syl 17 . . . . . 6 (𝜑𝐺 ∈ Grp)
4 eqid 2737 . . . . . . . 8 (Base‘𝐺) = (Base‘𝐺)
54subgss 19145 . . . . . . 7 (𝑇 ∈ (SubGrp‘𝐺) → 𝑇 ⊆ (Base‘𝐺))
61, 5syl 17 . . . . . 6 (𝜑𝑇 ⊆ (Base‘𝐺))
7 pj1eu.3 . . . . . . 7 (𝜑𝑈 ∈ (SubGrp‘𝐺))
84subgss 19145 . . . . . . 7 (𝑈 ∈ (SubGrp‘𝐺) → 𝑈 ⊆ (Base‘𝐺))
97, 8syl 17 . . . . . 6 (𝜑𝑈 ⊆ (Base‘𝐺))
103, 6, 93jca 1129 . . . . 5 (𝜑 → (𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)))
11 pj1eu.a . . . . . 6 + = (+g𝐺)
12 pj1eu.s . . . . . 6 = (LSSum‘𝐺)
13 pj1f.p . . . . . 6 𝑃 = (proj1𝐺)
144, 11, 12, 13pj1val 19713 . . . . 5 (((𝐺 ∈ Grp ∧ 𝑇 ⊆ (Base‘𝐺) ∧ 𝑈 ⊆ (Base‘𝐺)) ∧ 𝑋 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) = (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
1510, 14sylan 580 . . . 4 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) = (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)))
16 pj1eu.o . . . . . 6 0 = (0g𝐺)
17 pj1eu.z . . . . . 6 𝑍 = (Cntz‘𝐺)
18 pj1eu.4 . . . . . 6 (𝜑 → (𝑇𝑈) = { 0 })
19 pj1eu.5 . . . . . 6 (𝜑𝑇 ⊆ (𝑍𝑈))
2011, 12, 16, 17, 1, 7, 18, 19pj1eu 19714 . . . . 5 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦))
21 riotacl2 7404 . . . . 5 (∃!𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦) → (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)) ∈ {𝑥𝑇 ∣ ∃𝑦𝑈 𝑋 = (𝑥 + 𝑦)})
2220, 21syl 17 . . . 4 ((𝜑𝑋 ∈ (𝑇 𝑈)) → (𝑥𝑇𝑦𝑈 𝑋 = (𝑥 + 𝑦)) ∈ {𝑥𝑇 ∣ ∃𝑦𝑈 𝑋 = (𝑥 + 𝑦)})
2315, 22eqeltrd 2841 . . 3 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ((𝑇𝑃𝑈)‘𝑋) ∈ {𝑥𝑇 ∣ ∃𝑦𝑈 𝑋 = (𝑥 + 𝑦)})
24 oveq1 7438 . . . . . . 7 (𝑥 = ((𝑇𝑃𝑈)‘𝑋) → (𝑥 + 𝑦) = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))
2524eqeq2d 2748 . . . . . 6 (𝑥 = ((𝑇𝑃𝑈)‘𝑋) → (𝑋 = (𝑥 + 𝑦) ↔ 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦)))
2625rexbidv 3179 . . . . 5 (𝑥 = ((𝑇𝑃𝑈)‘𝑋) → (∃𝑦𝑈 𝑋 = (𝑥 + 𝑦) ↔ ∃𝑦𝑈 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦)))
2726elrab 3692 . . . 4 (((𝑇𝑃𝑈)‘𝑋) ∈ {𝑥𝑇 ∣ ∃𝑦𝑈 𝑋 = (𝑥 + 𝑦)} ↔ (((𝑇𝑃𝑈)‘𝑋) ∈ 𝑇 ∧ ∃𝑦𝑈 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦)))
2827simprbi 496 . . 3 (((𝑇𝑃𝑈)‘𝑋) ∈ {𝑥𝑇 ∣ ∃𝑦𝑈 𝑋 = (𝑥 + 𝑦)} → ∃𝑦𝑈 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))
2923, 28syl 17 . 2 ((𝜑𝑋 ∈ (𝑇 𝑈)) → ∃𝑦𝑈 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))
30 simprr 773 . . 3 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))
313ad2antrr 726 . . . . . 6 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝐺 ∈ Grp)
329ad2antrr 726 . . . . . 6 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑈 ⊆ (Base‘𝐺))
336ad2antrr 726 . . . . . 6 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑇 ⊆ (Base‘𝐺))
34 simplr 769 . . . . . . 7 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑋 ∈ (𝑇 𝑈))
3512, 17lsmcom2 19673 . . . . . . . . 9 ((𝑇 ∈ (SubGrp‘𝐺) ∧ 𝑈 ∈ (SubGrp‘𝐺) ∧ 𝑇 ⊆ (𝑍𝑈)) → (𝑇 𝑈) = (𝑈 𝑇))
361, 7, 19, 35syl3anc 1373 . . . . . . . 8 (𝜑 → (𝑇 𝑈) = (𝑈 𝑇))
3736ad2antrr 726 . . . . . . 7 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → (𝑇 𝑈) = (𝑈 𝑇))
3834, 37eleqtrd 2843 . . . . . 6 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑋 ∈ (𝑈 𝑇))
394, 11, 12, 13pj1val 19713 . . . . . 6 (((𝐺 ∈ Grp ∧ 𝑈 ⊆ (Base‘𝐺) ∧ 𝑇 ⊆ (Base‘𝐺)) ∧ 𝑋 ∈ (𝑈 𝑇)) → ((𝑈𝑃𝑇)‘𝑋) = (𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣)))
4031, 32, 33, 38, 39syl31anc 1375 . . . . 5 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → ((𝑈𝑃𝑇)‘𝑋) = (𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣)))
4111, 12, 16, 17, 1, 7, 18, 19, 13pj1f 19715 . . . . . . . . 9 (𝜑 → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
4241ad2antrr 726 . . . . . . . 8 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → (𝑇𝑃𝑈):(𝑇 𝑈)⟶𝑇)
4342, 34ffvelcdmd 7105 . . . . . . 7 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → ((𝑇𝑃𝑈)‘𝑋) ∈ 𝑇)
4419ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑇 ⊆ (𝑍𝑈))
4544, 43sseldd 3984 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → ((𝑇𝑃𝑈)‘𝑋) ∈ (𝑍𝑈))
46 simprl 771 . . . . . . . . 9 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑦𝑈)
4711, 17cntzi 19347 . . . . . . . . 9 ((((𝑇𝑃𝑈)‘𝑋) ∈ (𝑍𝑈) ∧ 𝑦𝑈) → (((𝑇𝑃𝑈)‘𝑋) + 𝑦) = (𝑦 + ((𝑇𝑃𝑈)‘𝑋)))
4845, 46, 47syl2anc 584 . . . . . . . 8 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → (((𝑇𝑃𝑈)‘𝑋) + 𝑦) = (𝑦 + ((𝑇𝑃𝑈)‘𝑋)))
4930, 48eqtrd 2777 . . . . . . 7 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑋 = (𝑦 + ((𝑇𝑃𝑈)‘𝑋)))
50 oveq2 7439 . . . . . . . 8 (𝑣 = ((𝑇𝑃𝑈)‘𝑋) → (𝑦 + 𝑣) = (𝑦 + ((𝑇𝑃𝑈)‘𝑋)))
5150rspceeqv 3645 . . . . . . 7 ((((𝑇𝑃𝑈)‘𝑋) ∈ 𝑇𝑋 = (𝑦 + ((𝑇𝑃𝑈)‘𝑋))) → ∃𝑣𝑇 𝑋 = (𝑦 + 𝑣))
5243, 49, 51syl2anc 584 . . . . . 6 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → ∃𝑣𝑇 𝑋 = (𝑦 + 𝑣))
53 simpll 767 . . . . . . . 8 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝜑)
54 incom 4209 . . . . . . . . . 10 (𝑈𝑇) = (𝑇𝑈)
5554, 18eqtrid 2789 . . . . . . . . 9 (𝜑 → (𝑈𝑇) = { 0 })
5617, 1, 7, 19cntzrecd 19696 . . . . . . . . 9 (𝜑𝑈 ⊆ (𝑍𝑇))
5711, 12, 16, 17, 7, 1, 55, 56pj1eu 19714 . . . . . . . 8 ((𝜑𝑋 ∈ (𝑈 𝑇)) → ∃!𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣))
5853, 38, 57syl2anc 584 . . . . . . 7 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → ∃!𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣))
59 oveq1 7438 . . . . . . . . . 10 (𝑢 = 𝑦 → (𝑢 + 𝑣) = (𝑦 + 𝑣))
6059eqeq2d 2748 . . . . . . . . 9 (𝑢 = 𝑦 → (𝑋 = (𝑢 + 𝑣) ↔ 𝑋 = (𝑦 + 𝑣)))
6160rexbidv 3179 . . . . . . . 8 (𝑢 = 𝑦 → (∃𝑣𝑇 𝑋 = (𝑢 + 𝑣) ↔ ∃𝑣𝑇 𝑋 = (𝑦 + 𝑣)))
6261riota2 7413 . . . . . . 7 ((𝑦𝑈 ∧ ∃!𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣)) → (∃𝑣𝑇 𝑋 = (𝑦 + 𝑣) ↔ (𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣)) = 𝑦))
6346, 58, 62syl2anc 584 . . . . . 6 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → (∃𝑣𝑇 𝑋 = (𝑦 + 𝑣) ↔ (𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣)) = 𝑦))
6452, 63mpbid 232 . . . . 5 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → (𝑢𝑈𝑣𝑇 𝑋 = (𝑢 + 𝑣)) = 𝑦)
6540, 64eqtrd 2777 . . . 4 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → ((𝑈𝑃𝑇)‘𝑋) = 𝑦)
6665oveq2d 7447 . . 3 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)) = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))
6730, 66eqtr4d 2780 . 2 (((𝜑𝑋 ∈ (𝑇 𝑈)) ∧ (𝑦𝑈𝑋 = (((𝑇𝑃𝑈)‘𝑋) + 𝑦))) → 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)))
6829, 67rexlimddv 3161 1 ((𝜑𝑋 ∈ (𝑇 𝑈)) → 𝑋 = (((𝑇𝑃𝑈)‘𝑋) + ((𝑈𝑃𝑇)‘𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wrex 3070  ∃!wreu 3378  {crab 3436  cin 3950  wss 3951  {csn 4626  wf 6557  cfv 6561  crio 7387  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951  SubGrpcsubg 19138  Cntzccntz 19333  LSSumclsm 19652  proj1cpj1 19653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-subg 19141  df-cntz 19335  df-lsm 19654  df-pj1 19655
This theorem is referenced by:  pj1eq  19718  pj1ghm  19721  pj1lmhm  21099
  Copyright terms: Public domain W3C validator