Proof of Theorem ordtypelem3
Step | Hyp | Ref
| Expression |
1 | | simpr 488 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑀 ∈ (𝑇 ∩ dom 𝐹)) |
2 | 1 | elin2d 4087 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑀 ∈ dom 𝐹) |
3 | | ordtypelem.1 |
. . . . 5
⊢ 𝐹 = recs(𝐺) |
4 | 3 | tfr2a 8053 |
. . . 4
⊢ (𝑀 ∈ dom 𝐹 → (𝐹‘𝑀) = (𝐺‘(𝐹 ↾ 𝑀))) |
5 | 2, 4 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹‘𝑀) = (𝐺‘(𝐹 ↾ 𝑀))) |
6 | 3 | tfr1a 8052 |
. . . . . . . . 9
⊢ (Fun
𝐹 ∧ Lim dom 𝐹) |
7 | 6 | simpri 489 |
. . . . . . . 8
⊢ Lim dom
𝐹 |
8 | | limord 6225 |
. . . . . . . 8
⊢ (Lim dom
𝐹 → Ord dom 𝐹) |
9 | 7, 8 | ax-mp 5 |
. . . . . . 7
⊢ Ord dom
𝐹 |
10 | | ordelord 6188 |
. . . . . . 7
⊢ ((Ord dom
𝐹 ∧ 𝑀 ∈ dom 𝐹) → Ord 𝑀) |
11 | 9, 2, 10 | sylancr 590 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → Ord 𝑀) |
12 | 3 | tfr2b 8054 |
. . . . . 6
⊢ (Ord
𝑀 → (𝑀 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝑀) ∈ V)) |
13 | 11, 12 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝑀 ∈ dom 𝐹 ↔ (𝐹 ↾ 𝑀) ∈ V)) |
14 | 2, 13 | mpbid 235 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹 ↾ 𝑀) ∈ V) |
15 | | ordtypelem.2 |
. . . . . . 7
⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} |
16 | | rneq 5773 |
. . . . . . . . . 10
⊢ (ℎ = (𝐹 ↾ 𝑀) → ran ℎ = ran (𝐹 ↾ 𝑀)) |
17 | | df-ima 5532 |
. . . . . . . . . 10
⊢ (𝐹 “ 𝑀) = ran (𝐹 ↾ 𝑀) |
18 | 16, 17 | eqtr4di 2791 |
. . . . . . . . 9
⊢ (ℎ = (𝐹 ↾ 𝑀) → ran ℎ = (𝐹 “ 𝑀)) |
19 | 18 | raleqdv 3315 |
. . . . . . . 8
⊢ (ℎ = (𝐹 ↾ 𝑀) → (∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤 ↔ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤)) |
20 | 19 | rabbidv 3380 |
. . . . . . 7
⊢ (ℎ = (𝐹 ↾ 𝑀) → {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤}) |
21 | 15, 20 | syl5eq 2785 |
. . . . . 6
⊢ (ℎ = (𝐹 ↾ 𝑀) → 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤}) |
22 | 21 | raleqdv 3315 |
. . . . . 6
⊢ (ℎ = (𝐹 ↾ 𝑀) → (∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣 ↔ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)) |
23 | 21, 22 | riotaeqbidv 7124 |
. . . . 5
⊢ (ℎ = (𝐹 ↾ 𝑀) → (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣) = (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)) |
24 | | ordtypelem.3 |
. . . . 5
⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) |
25 | | riotaex 7125 |
. . . . 5
⊢
(℩𝑣
∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣) ∈ V |
26 | 23, 24, 25 | fvmpt 6769 |
. . . 4
⊢ ((𝐹 ↾ 𝑀) ∈ V → (𝐺‘(𝐹 ↾ 𝑀)) = (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)) |
27 | 14, 26 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐺‘(𝐹 ↾ 𝑀)) = (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)) |
28 | 5, 27 | eqtrd 2773 |
. 2
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹‘𝑀) = (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)) |
29 | | ordtypelem.7 |
. . . . 5
⊢ (𝜑 → 𝑅 We 𝐴) |
30 | 29 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑅 We 𝐴) |
31 | | ordtypelem.8 |
. . . . 5
⊢ (𝜑 → 𝑅 Se 𝐴) |
32 | 31 | adantr 484 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑅 Se 𝐴) |
33 | | ssrab2 3967 |
. . . . 5
⊢ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ⊆ 𝐴 |
34 | 33 | a1i 11 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ⊆ 𝐴) |
35 | 1 | elin1d 4086 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑀 ∈ 𝑇) |
36 | | imaeq2 5893 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑀 → (𝐹 “ 𝑥) = (𝐹 “ 𝑀)) |
37 | 36 | raleqdv 3315 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑀 → (∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡 ↔ ∀𝑧 ∈ (𝐹 “ 𝑀)𝑧𝑅𝑡)) |
38 | 37 | rexbidv 3206 |
. . . . . . . . 9
⊢ (𝑥 = 𝑀 → (∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡 ↔ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑀)𝑧𝑅𝑡)) |
39 | | ordtypelem.5 |
. . . . . . . . 9
⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} |
40 | 38, 39 | elrab2 3588 |
. . . . . . . 8
⊢ (𝑀 ∈ 𝑇 ↔ (𝑀 ∈ On ∧ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑀)𝑧𝑅𝑡)) |
41 | 40 | simprbi 500 |
. . . . . . 7
⊢ (𝑀 ∈ 𝑇 → ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑀)𝑧𝑅𝑡) |
42 | 35, 41 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑀)𝑧𝑅𝑡) |
43 | | breq1 5030 |
. . . . . . . . 9
⊢ (𝑗 = 𝑧 → (𝑗𝑅𝑤 ↔ 𝑧𝑅𝑤)) |
44 | 43 | cbvralvw 3348 |
. . . . . . . 8
⊢
(∀𝑗 ∈
(𝐹 “ 𝑀)𝑗𝑅𝑤 ↔ ∀𝑧 ∈ (𝐹 “ 𝑀)𝑧𝑅𝑤) |
45 | | breq2 5031 |
. . . . . . . . 9
⊢ (𝑤 = 𝑡 → (𝑧𝑅𝑤 ↔ 𝑧𝑅𝑡)) |
46 | 45 | ralbidv 3109 |
. . . . . . . 8
⊢ (𝑤 = 𝑡 → (∀𝑧 ∈ (𝐹 “ 𝑀)𝑧𝑅𝑤 ↔ ∀𝑧 ∈ (𝐹 “ 𝑀)𝑧𝑅𝑡)) |
47 | 44, 46 | syl5bb 286 |
. . . . . . 7
⊢ (𝑤 = 𝑡 → (∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤 ↔ ∀𝑧 ∈ (𝐹 “ 𝑀)𝑧𝑅𝑡)) |
48 | 47 | cbvrexvw 3349 |
. . . . . 6
⊢
(∃𝑤 ∈
𝐴 ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤 ↔ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑀)𝑧𝑅𝑡) |
49 | 42, 48 | sylibr 237 |
. . . . 5
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → ∃𝑤 ∈ 𝐴 ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤) |
50 | | rabn0 4271 |
. . . . 5
⊢ ({𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ≠ ∅ ↔ ∃𝑤 ∈ 𝐴 ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤) |
51 | 49, 50 | sylibr 237 |
. . . 4
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ≠ ∅) |
52 | | wereu2 5516 |
. . . 4
⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ ({𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ⊆ 𝐴 ∧ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ≠ ∅)) → ∃!𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣) |
53 | 30, 32, 34, 51, 52 | syl22anc 838 |
. . 3
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → ∃!𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣) |
54 | | riotacl2 7138 |
. . 3
⊢
(∃!𝑣 ∈
{𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣 → (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣) ∈ {𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣}) |
55 | 53, 54 | syl 17 |
. 2
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣) ∈ {𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣}) |
56 | 28, 55 | eqeltrd 2833 |
1
⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹‘𝑀) ∈ {𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣}) |