MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem3 Structured version   Visualization version   GIF version

Theorem ordtypelem3 9517
Description: Lemma for ordtype 9529. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem3 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑀   𝑅,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem3
StepHypRef Expression
1 simpr 483 . . . . 5 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑀 ∈ (𝑇 ∩ dom 𝐹))
21elin2d 4198 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑀 ∈ dom 𝐹)
3 ordtypelem.1 . . . . 5 𝐹 = recs(𝐺)
43tfr2a 8397 . . . 4 (𝑀 ∈ dom 𝐹 → (𝐹𝑀) = (𝐺‘(𝐹𝑀)))
52, 4syl 17 . . 3 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) = (𝐺‘(𝐹𝑀)))
63tfr1a 8396 . . . . . . . . 9 (Fun 𝐹 ∧ Lim dom 𝐹)
76simpri 484 . . . . . . . 8 Lim dom 𝐹
8 limord 6423 . . . . . . . 8 (Lim dom 𝐹 → Ord dom 𝐹)
97, 8ax-mp 5 . . . . . . 7 Ord dom 𝐹
10 ordelord 6385 . . . . . . 7 ((Ord dom 𝐹𝑀 ∈ dom 𝐹) → Ord 𝑀)
119, 2, 10sylancr 585 . . . . . 6 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → Ord 𝑀)
123tfr2b 8398 . . . . . 6 (Ord 𝑀 → (𝑀 ∈ dom 𝐹 ↔ (𝐹𝑀) ∈ V))
1311, 12syl 17 . . . . 5 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝑀 ∈ dom 𝐹 ↔ (𝐹𝑀) ∈ V))
142, 13mpbid 231 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) ∈ V)
15 ordtypelem.2 . . . . . . 7 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
16 rneq 5934 . . . . . . . . . 10 ( = (𝐹𝑀) → ran = ran (𝐹𝑀))
17 df-ima 5688 . . . . . . . . . 10 (𝐹𝑀) = ran (𝐹𝑀)
1816, 17eqtr4di 2788 . . . . . . . . 9 ( = (𝐹𝑀) → ran = (𝐹𝑀))
1918raleqdv 3323 . . . . . . . 8 ( = (𝐹𝑀) → (∀𝑗 ∈ ran 𝑗𝑅𝑤 ↔ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤))
2019rabbidv 3438 . . . . . . 7 ( = (𝐹𝑀) → {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} = {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤})
2115, 20eqtrid 2782 . . . . . 6 ( = (𝐹𝑀) → 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤})
2221raleqdv 3323 . . . . . 6 ( = (𝐹𝑀) → (∀𝑢𝐶 ¬ 𝑢𝑅𝑣 ↔ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
2321, 22riotaeqbidv 7370 . . . . 5 ( = (𝐹𝑀) → (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣) = (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
24 ordtypelem.3 . . . . 5 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
25 riotaex 7371 . . . . 5 (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣) ∈ V
2623, 24, 25fvmpt 6997 . . . 4 ((𝐹𝑀) ∈ V → (𝐺‘(𝐹𝑀)) = (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
2714, 26syl 17 . . 3 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐺‘(𝐹𝑀)) = (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
285, 27eqtrd 2770 . 2 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) = (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
29 ordtypelem.7 . . . . 5 (𝜑𝑅 We 𝐴)
3029adantr 479 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑅 We 𝐴)
31 ordtypelem.8 . . . . 5 (𝜑𝑅 Se 𝐴)
3231adantr 479 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑅 Se 𝐴)
33 ssrab2 4076 . . . . 5 {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ⊆ 𝐴
3433a1i 11 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ⊆ 𝐴)
351elin1d 4197 . . . . . . 7 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑀𝑇)
36 imaeq2 6054 . . . . . . . . . . 11 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
3736raleqdv 3323 . . . . . . . . . 10 (𝑥 = 𝑀 → (∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∀𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡))
3837rexbidv 3176 . . . . . . . . 9 (𝑥 = 𝑀 → (∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∃𝑡𝐴𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡))
39 ordtypelem.5 . . . . . . . . 9 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
4038, 39elrab2 3685 . . . . . . . 8 (𝑀𝑇 ↔ (𝑀 ∈ On ∧ ∃𝑡𝐴𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡))
4140simprbi 495 . . . . . . 7 (𝑀𝑇 → ∃𝑡𝐴𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡)
4235, 41syl 17 . . . . . 6 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → ∃𝑡𝐴𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡)
43 breq1 5150 . . . . . . . . 9 (𝑗 = 𝑧 → (𝑗𝑅𝑤𝑧𝑅𝑤))
4443cbvralvw 3232 . . . . . . . 8 (∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤 ↔ ∀𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑤)
45 breq2 5151 . . . . . . . . 9 (𝑤 = 𝑡 → (𝑧𝑅𝑤𝑧𝑅𝑡))
4645ralbidv 3175 . . . . . . . 8 (𝑤 = 𝑡 → (∀𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑤 ↔ ∀𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡))
4744, 46bitrid 282 . . . . . . 7 (𝑤 = 𝑡 → (∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤 ↔ ∀𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡))
4847cbvrexvw 3233 . . . . . 6 (∃𝑤𝐴𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤 ↔ ∃𝑡𝐴𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡)
4942, 48sylibr 233 . . . . 5 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → ∃𝑤𝐴𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤)
50 rabn0 4384 . . . . 5 ({𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ≠ ∅ ↔ ∃𝑤𝐴𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤)
5149, 50sylibr 233 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ≠ ∅)
52 wereu2 5672 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ ({𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ⊆ 𝐴 ∧ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ≠ ∅)) → ∃!𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)
5330, 32, 34, 51, 52syl22anc 835 . . 3 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → ∃!𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)
54 riotacl2 7384 . . 3 (∃!𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣 → (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
5553, 54syl 17 . 2 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
5628, 55eqeltrd 2831 1 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 394   = wceq 1539  wcel 2104  wne 2938  wral 3059  wrex 3068  ∃!wreu 3372  {crab 3430  Vcvv 3472  cin 3946  wss 3947  c0 4321   class class class wbr 5147  cmpt 5230   Se wse 5628   We wwe 5629  dom cdm 5675  ran crn 5676  cres 5677  cima 5678  Ord word 6362  Oncon0 6363  Lim wlim 6364  Fun wfun 6536  cfv 6542  crio 7366  recscrecs 8372  OrdIsocoi 9506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-se 5631  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373
This theorem is referenced by:  ordtypelem4  9518  ordtypelem6  9520  ordtypelem7  9521
  Copyright terms: Public domain W3C validator