MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem3 Structured version   Visualization version   GIF version

Theorem ordtypelem3 9406
Description: Lemma for ordtype 9418. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem3 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑀   𝑅,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem3
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑀 ∈ (𝑇 ∩ dom 𝐹))
21elin2d 4155 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑀 ∈ dom 𝐹)
3 ordtypelem.1 . . . . 5 𝐹 = recs(𝐺)
43tfr2a 8314 . . . 4 (𝑀 ∈ dom 𝐹 → (𝐹𝑀) = (𝐺‘(𝐹𝑀)))
52, 4syl 17 . . 3 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) = (𝐺‘(𝐹𝑀)))
63tfr1a 8313 . . . . . . . . 9 (Fun 𝐹 ∧ Lim dom 𝐹)
76simpri 485 . . . . . . . 8 Lim dom 𝐹
8 limord 6367 . . . . . . . 8 (Lim dom 𝐹 → Ord dom 𝐹)
97, 8ax-mp 5 . . . . . . 7 Ord dom 𝐹
10 ordelord 6328 . . . . . . 7 ((Ord dom 𝐹𝑀 ∈ dom 𝐹) → Ord 𝑀)
119, 2, 10sylancr 587 . . . . . 6 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → Ord 𝑀)
123tfr2b 8315 . . . . . 6 (Ord 𝑀 → (𝑀 ∈ dom 𝐹 ↔ (𝐹𝑀) ∈ V))
1311, 12syl 17 . . . . 5 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝑀 ∈ dom 𝐹 ↔ (𝐹𝑀) ∈ V))
142, 13mpbid 232 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) ∈ V)
15 ordtypelem.2 . . . . . . 7 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
16 rneq 5876 . . . . . . . . . 10 ( = (𝐹𝑀) → ran = ran (𝐹𝑀))
17 df-ima 5629 . . . . . . . . . 10 (𝐹𝑀) = ran (𝐹𝑀)
1816, 17eqtr4di 2784 . . . . . . . . 9 ( = (𝐹𝑀) → ran = (𝐹𝑀))
1918raleqdv 3292 . . . . . . . 8 ( = (𝐹𝑀) → (∀𝑗 ∈ ran 𝑗𝑅𝑤 ↔ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤))
2019rabbidv 3402 . . . . . . 7 ( = (𝐹𝑀) → {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} = {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤})
2115, 20eqtrid 2778 . . . . . 6 ( = (𝐹𝑀) → 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤})
2221raleqdv 3292 . . . . . 6 ( = (𝐹𝑀) → (∀𝑢𝐶 ¬ 𝑢𝑅𝑣 ↔ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
2321, 22riotaeqbidv 7306 . . . . 5 ( = (𝐹𝑀) → (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣) = (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
24 ordtypelem.3 . . . . 5 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
25 riotaex 7307 . . . . 5 (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣) ∈ V
2623, 24, 25fvmpt 6929 . . . 4 ((𝐹𝑀) ∈ V → (𝐺‘(𝐹𝑀)) = (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
2714, 26syl 17 . . 3 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐺‘(𝐹𝑀)) = (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
285, 27eqtrd 2766 . 2 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) = (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
29 ordtypelem.7 . . . . 5 (𝜑𝑅 We 𝐴)
3029adantr 480 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑅 We 𝐴)
31 ordtypelem.8 . . . . 5 (𝜑𝑅 Se 𝐴)
3231adantr 480 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑅 Se 𝐴)
33 ssrab2 4030 . . . . 5 {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ⊆ 𝐴
3433a1i 11 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ⊆ 𝐴)
351elin1d 4154 . . . . . . 7 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑀𝑇)
36 imaeq2 6005 . . . . . . . . . . 11 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
3736raleqdv 3292 . . . . . . . . . 10 (𝑥 = 𝑀 → (∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∀𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡))
3837rexbidv 3156 . . . . . . . . 9 (𝑥 = 𝑀 → (∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∃𝑡𝐴𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡))
39 ordtypelem.5 . . . . . . . . 9 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
4038, 39elrab2 3650 . . . . . . . 8 (𝑀𝑇 ↔ (𝑀 ∈ On ∧ ∃𝑡𝐴𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡))
4140simprbi 496 . . . . . . 7 (𝑀𝑇 → ∃𝑡𝐴𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡)
4235, 41syl 17 . . . . . 6 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → ∃𝑡𝐴𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡)
43 breq1 5094 . . . . . . . . 9 (𝑗 = 𝑧 → (𝑗𝑅𝑤𝑧𝑅𝑤))
4443cbvralvw 3210 . . . . . . . 8 (∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤 ↔ ∀𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑤)
45 breq2 5095 . . . . . . . . 9 (𝑤 = 𝑡 → (𝑧𝑅𝑤𝑧𝑅𝑡))
4645ralbidv 3155 . . . . . . . 8 (𝑤 = 𝑡 → (∀𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑤 ↔ ∀𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡))
4744, 46bitrid 283 . . . . . . 7 (𝑤 = 𝑡 → (∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤 ↔ ∀𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡))
4847cbvrexvw 3211 . . . . . 6 (∃𝑤𝐴𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤 ↔ ∃𝑡𝐴𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡)
4942, 48sylibr 234 . . . . 5 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → ∃𝑤𝐴𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤)
50 rabn0 4339 . . . . 5 ({𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ≠ ∅ ↔ ∃𝑤𝐴𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤)
5149, 50sylibr 234 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ≠ ∅)
52 wereu2 5613 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ ({𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ⊆ 𝐴 ∧ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ≠ ∅)) → ∃!𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)
5330, 32, 34, 51, 52syl22anc 838 . . 3 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → ∃!𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)
54 riotacl2 7319 . . 3 (∃!𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣 → (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
5553, 54syl 17 . 2 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
5628, 55eqeltrd 2831 1 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wral 3047  wrex 3056  ∃!wreu 3344  {crab 3395  Vcvv 3436  cin 3901  wss 3902  c0 4283   class class class wbr 5091  cmpt 5172   Se wse 5567   We wwe 5568  dom cdm 5616  ran crn 5617  cres 5618  cima 5619  Ord word 6305  Oncon0 6306  Lim wlim 6307  Fun wfun 6475  cfv 6481  crio 7302  recscrecs 8290  OrdIsocoi 9395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291
This theorem is referenced by:  ordtypelem4  9407  ordtypelem6  9409  ordtypelem7  9410
  Copyright terms: Public domain W3C validator