MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem3 Structured version   Visualization version   GIF version

Theorem ordtypelem3 9279
Description: Lemma for ordtype 9291. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem3 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑀   𝑅,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem3
StepHypRef Expression
1 simpr 485 . . . . 5 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑀 ∈ (𝑇 ∩ dom 𝐹))
21elin2d 4133 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑀 ∈ dom 𝐹)
3 ordtypelem.1 . . . . 5 𝐹 = recs(𝐺)
43tfr2a 8226 . . . 4 (𝑀 ∈ dom 𝐹 → (𝐹𝑀) = (𝐺‘(𝐹𝑀)))
52, 4syl 17 . . 3 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) = (𝐺‘(𝐹𝑀)))
63tfr1a 8225 . . . . . . . . 9 (Fun 𝐹 ∧ Lim dom 𝐹)
76simpri 486 . . . . . . . 8 Lim dom 𝐹
8 limord 6325 . . . . . . . 8 (Lim dom 𝐹 → Ord dom 𝐹)
97, 8ax-mp 5 . . . . . . 7 Ord dom 𝐹
10 ordelord 6288 . . . . . . 7 ((Ord dom 𝐹𝑀 ∈ dom 𝐹) → Ord 𝑀)
119, 2, 10sylancr 587 . . . . . 6 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → Ord 𝑀)
123tfr2b 8227 . . . . . 6 (Ord 𝑀 → (𝑀 ∈ dom 𝐹 ↔ (𝐹𝑀) ∈ V))
1311, 12syl 17 . . . . 5 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝑀 ∈ dom 𝐹 ↔ (𝐹𝑀) ∈ V))
142, 13mpbid 231 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) ∈ V)
15 ordtypelem.2 . . . . . . 7 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
16 rneq 5845 . . . . . . . . . 10 ( = (𝐹𝑀) → ran = ran (𝐹𝑀))
17 df-ima 5602 . . . . . . . . . 10 (𝐹𝑀) = ran (𝐹𝑀)
1816, 17eqtr4di 2796 . . . . . . . . 9 ( = (𝐹𝑀) → ran = (𝐹𝑀))
1918raleqdv 3348 . . . . . . . 8 ( = (𝐹𝑀) → (∀𝑗 ∈ ran 𝑗𝑅𝑤 ↔ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤))
2019rabbidv 3414 . . . . . . 7 ( = (𝐹𝑀) → {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} = {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤})
2115, 20eqtrid 2790 . . . . . 6 ( = (𝐹𝑀) → 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤})
2221raleqdv 3348 . . . . . 6 ( = (𝐹𝑀) → (∀𝑢𝐶 ¬ 𝑢𝑅𝑣 ↔ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
2321, 22riotaeqbidv 7235 . . . . 5 ( = (𝐹𝑀) → (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣) = (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
24 ordtypelem.3 . . . . 5 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
25 riotaex 7236 . . . . 5 (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣) ∈ V
2623, 24, 25fvmpt 6875 . . . 4 ((𝐹𝑀) ∈ V → (𝐺‘(𝐹𝑀)) = (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
2714, 26syl 17 . . 3 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐺‘(𝐹𝑀)) = (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
285, 27eqtrd 2778 . 2 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) = (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
29 ordtypelem.7 . . . . 5 (𝜑𝑅 We 𝐴)
3029adantr 481 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑅 We 𝐴)
31 ordtypelem.8 . . . . 5 (𝜑𝑅 Se 𝐴)
3231adantr 481 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑅 Se 𝐴)
33 ssrab2 4013 . . . . 5 {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ⊆ 𝐴
3433a1i 11 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ⊆ 𝐴)
351elin1d 4132 . . . . . . 7 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑀𝑇)
36 imaeq2 5965 . . . . . . . . . . 11 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
3736raleqdv 3348 . . . . . . . . . 10 (𝑥 = 𝑀 → (∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∀𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡))
3837rexbidv 3226 . . . . . . . . 9 (𝑥 = 𝑀 → (∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∃𝑡𝐴𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡))
39 ordtypelem.5 . . . . . . . . 9 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
4038, 39elrab2 3627 . . . . . . . 8 (𝑀𝑇 ↔ (𝑀 ∈ On ∧ ∃𝑡𝐴𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡))
4140simprbi 497 . . . . . . 7 (𝑀𝑇 → ∃𝑡𝐴𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡)
4235, 41syl 17 . . . . . 6 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → ∃𝑡𝐴𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡)
43 breq1 5077 . . . . . . . . 9 (𝑗 = 𝑧 → (𝑗𝑅𝑤𝑧𝑅𝑤))
4443cbvralvw 3383 . . . . . . . 8 (∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤 ↔ ∀𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑤)
45 breq2 5078 . . . . . . . . 9 (𝑤 = 𝑡 → (𝑧𝑅𝑤𝑧𝑅𝑡))
4645ralbidv 3112 . . . . . . . 8 (𝑤 = 𝑡 → (∀𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑤 ↔ ∀𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡))
4744, 46bitrid 282 . . . . . . 7 (𝑤 = 𝑡 → (∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤 ↔ ∀𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡))
4847cbvrexvw 3384 . . . . . 6 (∃𝑤𝐴𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤 ↔ ∃𝑡𝐴𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡)
4942, 48sylibr 233 . . . . 5 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → ∃𝑤𝐴𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤)
50 rabn0 4319 . . . . 5 ({𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ≠ ∅ ↔ ∃𝑤𝐴𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤)
5149, 50sylibr 233 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ≠ ∅)
52 wereu2 5586 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ ({𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ⊆ 𝐴 ∧ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ≠ ∅)) → ∃!𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)
5330, 32, 34, 51, 52syl22anc 836 . . 3 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → ∃!𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)
54 riotacl2 7249 . . 3 (∃!𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣 → (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
5553, 54syl 17 . 2 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
5628, 55eqeltrd 2839 1 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  ∃!wreu 3066  {crab 3068  Vcvv 3432  cin 3886  wss 3887  c0 4256   class class class wbr 5074  cmpt 5157   Se wse 5542   We wwe 5543  dom cdm 5589  ran crn 5590  cres 5591  cima 5592  Ord word 6265  Oncon0 6266  Lim wlim 6267  Fun wfun 6427  cfv 6433  crio 7231  recscrecs 8201  OrdIsocoi 9268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202
This theorem is referenced by:  ordtypelem4  9280  ordtypelem6  9282  ordtypelem7  9283
  Copyright terms: Public domain W3C validator