MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtypelem3 Structured version   Visualization version   GIF version

Theorem ordtypelem3 9413
Description: Lemma for ordtype 9425. (Contributed by Mario Carneiro, 24-Jun-2015.)
Hypotheses
Ref Expression
ordtypelem.1 𝐹 = recs(𝐺)
ordtypelem.2 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
ordtypelem.3 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
ordtypelem.5 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
ordtypelem.6 𝑂 = OrdIso(𝑅, 𝐴)
ordtypelem.7 (𝜑𝑅 We 𝐴)
ordtypelem.8 (𝜑𝑅 Se 𝐴)
Assertion
Ref Expression
ordtypelem3 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
Distinct variable groups:   𝑣,𝑢,𝐶   ,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧,𝑀   𝑅,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝐴,,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧   𝑡,𝑂,𝑢,𝑣,𝑥   𝜑,𝑡,𝑥   ,𝐹,𝑗,𝑡,𝑢,𝑣,𝑤,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑧,𝑤,𝑣,𝑢,,𝑗)   𝐶(𝑥,𝑧,𝑤,𝑡,,𝑗)   𝑇(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝐺(𝑥,𝑧,𝑤,𝑣,𝑢,𝑡,,𝑗)   𝑂(𝑧,𝑤,,𝑗)

Proof of Theorem ordtypelem3
StepHypRef Expression
1 simpr 484 . . . . 5 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑀 ∈ (𝑇 ∩ dom 𝐹))
21elin2d 4154 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑀 ∈ dom 𝐹)
3 ordtypelem.1 . . . . 5 𝐹 = recs(𝐺)
43tfr2a 8320 . . . 4 (𝑀 ∈ dom 𝐹 → (𝐹𝑀) = (𝐺‘(𝐹𝑀)))
52, 4syl 17 . . 3 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) = (𝐺‘(𝐹𝑀)))
63tfr1a 8319 . . . . . . . . 9 (Fun 𝐹 ∧ Lim dom 𝐹)
76simpri 485 . . . . . . . 8 Lim dom 𝐹
8 limord 6372 . . . . . . . 8 (Lim dom 𝐹 → Ord dom 𝐹)
97, 8ax-mp 5 . . . . . . 7 Ord dom 𝐹
10 ordelord 6333 . . . . . . 7 ((Ord dom 𝐹𝑀 ∈ dom 𝐹) → Ord 𝑀)
119, 2, 10sylancr 587 . . . . . 6 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → Ord 𝑀)
123tfr2b 8321 . . . . . 6 (Ord 𝑀 → (𝑀 ∈ dom 𝐹 ↔ (𝐹𝑀) ∈ V))
1311, 12syl 17 . . . . 5 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝑀 ∈ dom 𝐹 ↔ (𝐹𝑀) ∈ V))
142, 13mpbid 232 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) ∈ V)
15 ordtypelem.2 . . . . . . 7 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤}
16 rneq 5880 . . . . . . . . . 10 ( = (𝐹𝑀) → ran = ran (𝐹𝑀))
17 df-ima 5632 . . . . . . . . . 10 (𝐹𝑀) = ran (𝐹𝑀)
1816, 17eqtr4di 2786 . . . . . . . . 9 ( = (𝐹𝑀) → ran = (𝐹𝑀))
1918raleqdv 3293 . . . . . . . 8 ( = (𝐹𝑀) → (∀𝑗 ∈ ran 𝑗𝑅𝑤 ↔ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤))
2019rabbidv 3403 . . . . . . 7 ( = (𝐹𝑀) → {𝑤𝐴 ∣ ∀𝑗 ∈ ran 𝑗𝑅𝑤} = {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤})
2115, 20eqtrid 2780 . . . . . 6 ( = (𝐹𝑀) → 𝐶 = {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤})
2221raleqdv 3293 . . . . . 6 ( = (𝐹𝑀) → (∀𝑢𝐶 ¬ 𝑢𝑅𝑣 ↔ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
2321, 22riotaeqbidv 7312 . . . . 5 ( = (𝐹𝑀) → (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣) = (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
24 ordtypelem.3 . . . . 5 𝐺 = ( ∈ V ↦ (𝑣𝐶𝑢𝐶 ¬ 𝑢𝑅𝑣))
25 riotaex 7313 . . . . 5 (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣) ∈ V
2623, 24, 25fvmpt 6935 . . . 4 ((𝐹𝑀) ∈ V → (𝐺‘(𝐹𝑀)) = (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
2714, 26syl 17 . . 3 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐺‘(𝐹𝑀)) = (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
285, 27eqtrd 2768 . 2 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) = (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))
29 ordtypelem.7 . . . . 5 (𝜑𝑅 We 𝐴)
3029adantr 480 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑅 We 𝐴)
31 ordtypelem.8 . . . . 5 (𝜑𝑅 Se 𝐴)
3231adantr 480 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑅 Se 𝐴)
33 ssrab2 4029 . . . . 5 {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ⊆ 𝐴
3433a1i 11 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ⊆ 𝐴)
351elin1d 4153 . . . . . . 7 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → 𝑀𝑇)
36 imaeq2 6009 . . . . . . . . . . 11 (𝑥 = 𝑀 → (𝐹𝑥) = (𝐹𝑀))
3736raleqdv 3293 . . . . . . . . . 10 (𝑥 = 𝑀 → (∀𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∀𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡))
3837rexbidv 3157 . . . . . . . . 9 (𝑥 = 𝑀 → (∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡 ↔ ∃𝑡𝐴𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡))
39 ordtypelem.5 . . . . . . . . 9 𝑇 = {𝑥 ∈ On ∣ ∃𝑡𝐴𝑧 ∈ (𝐹𝑥)𝑧𝑅𝑡}
4038, 39elrab2 3646 . . . . . . . 8 (𝑀𝑇 ↔ (𝑀 ∈ On ∧ ∃𝑡𝐴𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡))
4140simprbi 496 . . . . . . 7 (𝑀𝑇 → ∃𝑡𝐴𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡)
4235, 41syl 17 . . . . . 6 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → ∃𝑡𝐴𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡)
43 breq1 5096 . . . . . . . . 9 (𝑗 = 𝑧 → (𝑗𝑅𝑤𝑧𝑅𝑤))
4443cbvralvw 3211 . . . . . . . 8 (∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤 ↔ ∀𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑤)
45 breq2 5097 . . . . . . . . 9 (𝑤 = 𝑡 → (𝑧𝑅𝑤𝑧𝑅𝑡))
4645ralbidv 3156 . . . . . . . 8 (𝑤 = 𝑡 → (∀𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑤 ↔ ∀𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡))
4744, 46bitrid 283 . . . . . . 7 (𝑤 = 𝑡 → (∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤 ↔ ∀𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡))
4847cbvrexvw 3212 . . . . . 6 (∃𝑤𝐴𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤 ↔ ∃𝑡𝐴𝑧 ∈ (𝐹𝑀)𝑧𝑅𝑡)
4942, 48sylibr 234 . . . . 5 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → ∃𝑤𝐴𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤)
50 rabn0 4338 . . . . 5 ({𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ≠ ∅ ↔ ∃𝑤𝐴𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤)
5149, 50sylibr 234 . . . 4 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ≠ ∅)
52 wereu2 5616 . . . 4 (((𝑅 We 𝐴𝑅 Se 𝐴) ∧ ({𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ⊆ 𝐴 ∧ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ≠ ∅)) → ∃!𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)
5330, 32, 34, 51, 52syl22anc 838 . . 3 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → ∃!𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣)
54 riotacl2 7325 . . 3 (∃!𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣 → (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
5553, 54syl 17 . 2 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤}∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
5628, 55eqeltrd 2833 1 ((𝜑𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹𝑀) ∈ {𝑣 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤𝐴 ∣ ∀𝑗 ∈ (𝐹𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣})
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  ∃!wreu 3345  {crab 3396  Vcvv 3437  cin 3897  wss 3898  c0 4282   class class class wbr 5093  cmpt 5174   Se wse 5570   We wwe 5571  dom cdm 5619  ran crn 5620  cres 5621  cima 5622  Ord word 6310  Oncon0 6311  Lim wlim 6312  Fun wfun 6480  cfv 6486  crio 7308  recscrecs 8296  OrdIsocoi 9402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297
This theorem is referenced by:  ordtypelem4  9414  ordtypelem6  9416  ordtypelem7  9417
  Copyright terms: Public domain W3C validator