![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grplinv | Structured version Visualization version GIF version |
Description: The left inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinv.p | ⊢ + = (+g‘𝐺) |
grpinv.u | ⊢ 0 = (0g‘𝐺) |
grpinv.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grplinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpinv.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
3 | grpinv.u | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
4 | grpinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
5 | 1, 2, 3, 4 | grpinvval 19020 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
7 | 1, 2, 3 | grpinveu 19014 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
8 | riotacl2 7421 | . . . 4 ⊢ (∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 → (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) ∈ {𝑦 ∈ 𝐵 ∣ (𝑦 + 𝑋) = 0 }) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) ∈ {𝑦 ∈ 𝐵 ∣ (𝑦 + 𝑋) = 0 }) |
10 | 6, 9 | eqeltrd 2844 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ {𝑦 ∈ 𝐵 ∣ (𝑦 + 𝑋) = 0 }) |
11 | oveq1 7455 | . . . . 5 ⊢ (𝑦 = (𝑁‘𝑋) → (𝑦 + 𝑋) = ((𝑁‘𝑋) + 𝑋)) | |
12 | 11 | eqeq1d 2742 | . . . 4 ⊢ (𝑦 = (𝑁‘𝑋) → ((𝑦 + 𝑋) = 0 ↔ ((𝑁‘𝑋) + 𝑋) = 0 )) |
13 | 12 | elrab 3708 | . . 3 ⊢ ((𝑁‘𝑋) ∈ {𝑦 ∈ 𝐵 ∣ (𝑦 + 𝑋) = 0 } ↔ ((𝑁‘𝑋) ∈ 𝐵 ∧ ((𝑁‘𝑋) + 𝑋) = 0 )) |
14 | 13 | simprbi 496 | . 2 ⊢ ((𝑁‘𝑋) ∈ {𝑦 ∈ 𝐵 ∣ (𝑦 + 𝑋) = 0 } → ((𝑁‘𝑋) + 𝑋) = 0 ) |
15 | 10, 14 | syl 17 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃!wreu 3386 {crab 3443 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 0gc0g 17499 Grpcgrp 18973 invgcminusg 18974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-riota 7404 df-ov 7451 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 |
This theorem is referenced by: grprinv 19030 grpinvid1 19031 grpinvid2 19032 isgrpinv 19033 grplinvd 19034 grplrinv 19036 grplcan 19040 grpasscan2 19042 grpinvinv 19045 grpraddf1o 19054 grpinvssd 19057 grpsubadd 19068 grplactcnv 19083 prdsinvlem 19089 imasgrp 19096 ghmgrp 19106 mulgdirlem 19145 issubg2 19181 isnsg3 19200 nmzsubg 19205 ssnmz 19206 eqger 19218 qusgrp 19226 conjghm 19289 galcan 19344 cntzsubg 19379 lsmmod 19717 lsmdisj2 19724 ringnegr 20326 unitlinv 20419 isdrng2 20765 lmodvneg1 20925 evpmodpmf1o 21637 psrlinv 21998 grpvlinv 22423 tgpconncompeqg 24141 qustgpopn 24149 clmvslinv 25160 ogrpinv0le 33065 ogrpaddltrbid 33070 ogrpinv0lt 33072 ogrpinvlt 33073 quslsm 33398 lflnegl 39032 dvhgrp 41064 |
Copyright terms: Public domain | W3C validator |