| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > grplinv | Structured version Visualization version GIF version | ||
| Description: The left inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
| Ref | Expression |
|---|---|
| grpinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| grpinv.p | ⊢ + = (+g‘𝐺) |
| grpinv.u | ⊢ 0 = (0g‘𝐺) |
| grpinv.n | ⊢ 𝑁 = (invg‘𝐺) |
| Ref | Expression |
|---|---|
| grplinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | grpinv.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
| 3 | grpinv.u | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
| 4 | grpinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
| 5 | 1, 2, 3, 4 | grpinvval 18877 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
| 6 | 5 | adantl 481 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
| 7 | 1, 2, 3 | grpinveu 18871 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
| 8 | riotacl2 7326 | . . . 4 ⊢ (∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 → (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) ∈ {𝑦 ∈ 𝐵 ∣ (𝑦 + 𝑋) = 0 }) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) ∈ {𝑦 ∈ 𝐵 ∣ (𝑦 + 𝑋) = 0 }) |
| 10 | 6, 9 | eqeltrd 2828 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ {𝑦 ∈ 𝐵 ∣ (𝑦 + 𝑋) = 0 }) |
| 11 | oveq1 7360 | . . . . 5 ⊢ (𝑦 = (𝑁‘𝑋) → (𝑦 + 𝑋) = ((𝑁‘𝑋) + 𝑋)) | |
| 12 | 11 | eqeq1d 2731 | . . . 4 ⊢ (𝑦 = (𝑁‘𝑋) → ((𝑦 + 𝑋) = 0 ↔ ((𝑁‘𝑋) + 𝑋) = 0 )) |
| 13 | 12 | elrab 3650 | . . 3 ⊢ ((𝑁‘𝑋) ∈ {𝑦 ∈ 𝐵 ∣ (𝑦 + 𝑋) = 0 } ↔ ((𝑁‘𝑋) ∈ 𝐵 ∧ ((𝑁‘𝑋) + 𝑋) = 0 )) |
| 14 | 13 | simprbi 496 | . 2 ⊢ ((𝑁‘𝑋) ∈ {𝑦 ∈ 𝐵 ∣ (𝑦 + 𝑋) = 0 } → ((𝑁‘𝑋) + 𝑋) = 0 ) |
| 15 | 10, 14 | syl 17 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃!wreu 3343 {crab 3396 ‘cfv 6486 ℩crio 7309 (class class class)co 7353 Basecbs 17138 +gcplusg 17179 0gc0g 17361 Grpcgrp 18830 invgcminusg 18831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-riota 7310 df-ov 7356 df-0g 17363 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-grp 18833 df-minusg 18834 |
| This theorem is referenced by: grprinv 18887 grpinvid1 18888 grpinvid2 18889 isgrpinv 18890 grplinvd 18891 grplrinv 18893 grplcan 18897 grpasscan2 18899 grpinvinv 18902 grpraddf1o 18911 grpinvssd 18914 grpsubadd 18925 grplactcnv 18940 prdsinvlem 18946 imasgrp 18953 ghmgrp 18963 mulgdirlem 19002 issubg2 19038 isnsg3 19057 nmzsubg 19062 ssnmz 19063 eqger 19075 qusgrp 19083 conjghm 19146 galcan 19201 cntzsubg 19236 lsmmod 19572 lsmdisj2 19579 ogrpinv0le 20033 ogrpaddltrbid 20038 ogrpinv0lt 20040 ogrpinvlt 20041 ringnegr 20206 unitlinv 20296 isdrng2 20646 lmodvneg1 20826 evpmodpmf1o 21521 psrlinv 21880 grpvlinv 22301 tgpconncompeqg 24015 qustgpopn 24023 clmvslinv 25024 quslsm 33352 lflnegl 39054 dvhgrp 41086 |
| Copyright terms: Public domain | W3C validator |