Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplinv Structured version   Visualization version   GIF version

Theorem grplinv 18219
 Description: The left inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpinv.b 𝐵 = (Base‘𝐺)
grpinv.p + = (+g𝐺)
grpinv.u 0 = (0g𝐺)
grpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grplinv ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 𝑋) = 0 )

Proof of Theorem grplinv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grpinv.b . . . . 5 𝐵 = (Base‘𝐺)
2 grpinv.p . . . . 5 + = (+g𝐺)
3 grpinv.u . . . . 5 0 = (0g𝐺)
4 grpinv.n . . . . 5 𝑁 = (invg𝐺)
51, 2, 3, 4grpinvval 18211 . . . 4 (𝑋𝐵 → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
65adantl 485 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
71, 2, 3grpinveu 18205 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃!𝑦𝐵 (𝑦 + 𝑋) = 0 )
8 riotacl2 7124 . . . 4 (∃!𝑦𝐵 (𝑦 + 𝑋) = 0 → (𝑦𝐵 (𝑦 + 𝑋) = 0 ) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 })
97, 8syl 17 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦𝐵 (𝑦 + 𝑋) = 0 ) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 })
106, 9eqeltrd 2852 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 })
11 oveq1 7157 . . . . 5 (𝑦 = (𝑁𝑋) → (𝑦 + 𝑋) = ((𝑁𝑋) + 𝑋))
1211eqeq1d 2760 . . . 4 (𝑦 = (𝑁𝑋) → ((𝑦 + 𝑋) = 0 ↔ ((𝑁𝑋) + 𝑋) = 0 ))
1312elrab 3602 . . 3 ((𝑁𝑋) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 } ↔ ((𝑁𝑋) ∈ 𝐵 ∧ ((𝑁𝑋) + 𝑋) = 0 ))
1413simprbi 500 . 2 ((𝑁𝑋) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 } → ((𝑁𝑋) + 𝑋) = 0 )
1510, 14syl 17 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 𝑋) = 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111  ∃!wreu 3072  {crab 3074  ‘cfv 6335  ℩crio 7107  (class class class)co 7150  Basecbs 16541  +gcplusg 16623  0gc0g 16771  Grpcgrp 18169  invgcminusg 18170 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rmo 3078  df-rab 3079  df-v 3411  df-sbc 3697  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-fv 6343  df-riota 7108  df-ov 7153  df-0g 16773  df-mgm 17918  df-sgrp 17967  df-mnd 17978  df-grp 18172  df-minusg 18173 This theorem is referenced by:  grprinv  18220  grpinvid1  18221  grpinvid2  18222  isgrpinv  18223  grplrinv  18224  grplcan  18228  grpasscan2  18230  grpinvinv  18233  grpinvssd  18243  grpsubadd  18254  grplactcnv  18269  prdsinvlem  18275  imasgrp  18282  ghmgrp  18290  mulgdirlem  18325  issubg2  18361  isnsg3  18379  nmzsubg  18384  ssnmz  18385  eqger  18397  qusgrp  18402  conjghm  18456  galcan  18501  cntzsubg  18534  lsmmod  18868  lsmdisj2  18875  rngnegr  19416  unitlinv  19498  isdrng2  19580  lmodvneg1  19745  evpmodpmf1o  20361  psrlinv  20725  grpvlinv  21097  tgpconncompeqg  22812  qustgpopn  22820  clmvslinv  23809  ogrpinv0le  30867  ogrpaddltrbid  30872  ogrpinv0lt  30874  ogrpinvlt  30875  quslsm  31114  lflnegl  36652  dvhgrp  38683
 Copyright terms: Public domain W3C validator