MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplinv Structured version   Visualization version   GIF version

Theorem grplinv 19007
Description: The left inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpinv.b 𝐵 = (Base‘𝐺)
grpinv.p + = (+g𝐺)
grpinv.u 0 = (0g𝐺)
grpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grplinv ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 𝑋) = 0 )

Proof of Theorem grplinv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grpinv.b . . . . 5 𝐵 = (Base‘𝐺)
2 grpinv.p . . . . 5 + = (+g𝐺)
3 grpinv.u . . . . 5 0 = (0g𝐺)
4 grpinv.n . . . . 5 𝑁 = (invg𝐺)
51, 2, 3, 4grpinvval 18998 . . . 4 (𝑋𝐵 → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
65adantl 481 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
71, 2, 3grpinveu 18992 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃!𝑦𝐵 (𝑦 + 𝑋) = 0 )
8 riotacl2 7404 . . . 4 (∃!𝑦𝐵 (𝑦 + 𝑋) = 0 → (𝑦𝐵 (𝑦 + 𝑋) = 0 ) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 })
97, 8syl 17 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦𝐵 (𝑦 + 𝑋) = 0 ) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 })
106, 9eqeltrd 2841 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 })
11 oveq1 7438 . . . . 5 (𝑦 = (𝑁𝑋) → (𝑦 + 𝑋) = ((𝑁𝑋) + 𝑋))
1211eqeq1d 2739 . . . 4 (𝑦 = (𝑁𝑋) → ((𝑦 + 𝑋) = 0 ↔ ((𝑁𝑋) + 𝑋) = 0 ))
1312elrab 3692 . . 3 ((𝑁𝑋) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 } ↔ ((𝑁𝑋) ∈ 𝐵 ∧ ((𝑁𝑋) + 𝑋) = 0 ))
1413simprbi 496 . 2 ((𝑁𝑋) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 } → ((𝑁𝑋) + 𝑋) = 0 )
1510, 14syl 17 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  ∃!wreu 3378  {crab 3436  cfv 6561  crio 7387  (class class class)co 7431  Basecbs 17247  +gcplusg 17297  0gc0g 17484  Grpcgrp 18951  invgcminusg 18952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-riota 7388  df-ov 7434  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955
This theorem is referenced by:  grprinv  19008  grpinvid1  19009  grpinvid2  19010  isgrpinv  19011  grplinvd  19012  grplrinv  19014  grplcan  19018  grpasscan2  19020  grpinvinv  19023  grpraddf1o  19032  grpinvssd  19035  grpsubadd  19046  grplactcnv  19061  prdsinvlem  19067  imasgrp  19074  ghmgrp  19084  mulgdirlem  19123  issubg2  19159  isnsg3  19178  nmzsubg  19183  ssnmz  19184  eqger  19196  qusgrp  19204  conjghm  19267  galcan  19322  cntzsubg  19357  lsmmod  19693  lsmdisj2  19700  ringnegr  20300  unitlinv  20393  isdrng2  20743  lmodvneg1  20903  evpmodpmf1o  21614  psrlinv  21975  grpvlinv  22402  tgpconncompeqg  24120  qustgpopn  24128  clmvslinv  25141  ogrpinv0le  33092  ogrpaddltrbid  33097  ogrpinv0lt  33099  ogrpinvlt  33100  quslsm  33433  lflnegl  39077  dvhgrp  41109
  Copyright terms: Public domain W3C validator