MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplinv Structured version   Visualization version   GIF version

Theorem grplinv 18084
Description: The left inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpinv.b 𝐵 = (Base‘𝐺)
grpinv.p + = (+g𝐺)
grpinv.u 0 = (0g𝐺)
grpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grplinv ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 𝑋) = 0 )

Proof of Theorem grplinv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grpinv.b . . . . 5 𝐵 = (Base‘𝐺)
2 grpinv.p . . . . 5 + = (+g𝐺)
3 grpinv.u . . . . 5 0 = (0g𝐺)
4 grpinv.n . . . . 5 𝑁 = (invg𝐺)
51, 2, 3, 4grpinvval 18076 . . . 4 (𝑋𝐵 → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
65adantl 482 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
71, 2, 3grpinveu 18070 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃!𝑦𝐵 (𝑦 + 𝑋) = 0 )
8 riotacl2 7125 . . . 4 (∃!𝑦𝐵 (𝑦 + 𝑋) = 0 → (𝑦𝐵 (𝑦 + 𝑋) = 0 ) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 })
97, 8syl 17 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦𝐵 (𝑦 + 𝑋) = 0 ) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 })
106, 9eqeltrd 2917 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 })
11 oveq1 7158 . . . . 5 (𝑦 = (𝑁𝑋) → (𝑦 + 𝑋) = ((𝑁𝑋) + 𝑋))
1211eqeq1d 2826 . . . 4 (𝑦 = (𝑁𝑋) → ((𝑦 + 𝑋) = 0 ↔ ((𝑁𝑋) + 𝑋) = 0 ))
1312elrab 3683 . . 3 ((𝑁𝑋) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 } ↔ ((𝑁𝑋) ∈ 𝐵 ∧ ((𝑁𝑋) + 𝑋) = 0 ))
1413simprbi 497 . 2 ((𝑁𝑋) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 } → ((𝑁𝑋) + 𝑋) = 0 )
1510, 14syl 17 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1530  wcel 2106  ∃!wreu 3144  {crab 3146  cfv 6351  crio 7108  (class class class)co 7151  Basecbs 16475  +gcplusg 16557  0gc0g 16705  Grpcgrp 18035  invgcminusg 18036
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-ext 2796  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-mpt 5143  df-id 5458  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-fv 6359  df-riota 7109  df-ov 7154  df-0g 16707  df-mgm 17844  df-sgrp 17892  df-mnd 17903  df-grp 18038  df-minusg 18039
This theorem is referenced by:  grprinv  18085  grpinvid1  18086  grpinvid2  18087  isgrpinv  18088  grplrinv  18089  grplcan  18093  grpasscan2  18095  grpinvinv  18098  grpinvssd  18108  grpsubadd  18119  grplactcnv  18134  prdsinvlem  18140  imasgrp  18147  ghmgrp  18155  mulgdirlem  18190  issubg2  18226  isnsg3  18244  nmzsubg  18249  ssnmz  18250  eqger  18262  qusgrp  18267  conjghm  18321  galcan  18366  cntzsubg  18399  lsmmod  18723  lsmdisj2  18730  rngnegr  19267  unitlinv  19349  isdrng2  19434  lmodvneg1  19599  psrlinv  20098  evpmodpmf1o  20656  grpvlinv  20922  tgpconncompeqg  22635  qustgpopn  22643  clmvslinv  23627  ogrpinv0le  30631  ogrpaddltrbid  30636  ogrpinv0lt  30638  ogrpinvlt  30639  lflnegl  36080  dvhgrp  38111
  Copyright terms: Public domain W3C validator