![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > grplinv | Structured version Visualization version GIF version |
Description: The left inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.) |
Ref | Expression |
---|---|
grpinv.b | ⊢ 𝐵 = (Base‘𝐺) |
grpinv.p | ⊢ + = (+g‘𝐺) |
grpinv.u | ⊢ 0 = (0g‘𝐺) |
grpinv.n | ⊢ 𝑁 = (invg‘𝐺) |
Ref | Expression |
---|---|
grplinv | ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | grpinv.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐺) | |
2 | grpinv.p | . . . . 5 ⊢ + = (+g‘𝐺) | |
3 | grpinv.u | . . . . 5 ⊢ 0 = (0g‘𝐺) | |
4 | grpinv.n | . . . . 5 ⊢ 𝑁 = (invg‘𝐺) | |
5 | 1, 2, 3, 4 | grpinvval 17774 | . . . 4 ⊢ (𝑋 ∈ 𝐵 → (𝑁‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
6 | 5 | adantl 474 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) = (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 )) |
7 | 1, 2, 3 | grpinveu 17769 | . . . 4 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) |
8 | riotacl2 6850 | . . . 4 ⊢ (∃!𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 → (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) ∈ {𝑦 ∈ 𝐵 ∣ (𝑦 + 𝑋) = 0 }) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (℩𝑦 ∈ 𝐵 (𝑦 + 𝑋) = 0 ) ∈ {𝑦 ∈ 𝐵 ∣ (𝑦 + 𝑋) = 0 }) |
10 | 6, 9 | eqeltrd 2876 | . 2 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → (𝑁‘𝑋) ∈ {𝑦 ∈ 𝐵 ∣ (𝑦 + 𝑋) = 0 }) |
11 | oveq1 6883 | . . . . 5 ⊢ (𝑦 = (𝑁‘𝑋) → (𝑦 + 𝑋) = ((𝑁‘𝑋) + 𝑋)) | |
12 | 11 | eqeq1d 2799 | . . . 4 ⊢ (𝑦 = (𝑁‘𝑋) → ((𝑦 + 𝑋) = 0 ↔ ((𝑁‘𝑋) + 𝑋) = 0 )) |
13 | 12 | elrab 3554 | . . 3 ⊢ ((𝑁‘𝑋) ∈ {𝑦 ∈ 𝐵 ∣ (𝑦 + 𝑋) = 0 } ↔ ((𝑁‘𝑋) ∈ 𝐵 ∧ ((𝑁‘𝑋) + 𝑋) = 0 )) |
14 | 13 | simprbi 491 | . 2 ⊢ ((𝑁‘𝑋) ∈ {𝑦 ∈ 𝐵 ∣ (𝑦 + 𝑋) = 0 } → ((𝑁‘𝑋) + 𝑋) = 0 ) |
15 | 10, 14 | syl 17 | 1 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵) → ((𝑁‘𝑋) + 𝑋) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∃!wreu 3089 {crab 3091 ‘cfv 6099 ℩crio 6836 (class class class)co 6876 Basecbs 16181 +gcplusg 16264 0gc0g 16412 Grpcgrp 17735 invgcminusg 17736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pow 5033 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rmo 3095 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-riota 6837 df-ov 6879 df-0g 16414 df-mgm 17554 df-sgrp 17596 df-mnd 17607 df-grp 17738 df-minusg 17739 |
This theorem is referenced by: grprinv 17782 grpinvid1 17783 grpinvid2 17784 isgrpinv 17785 grplrinv 17786 grplcan 17790 grpasscan2 17792 grpinvinv 17795 grpinvssd 17805 grpsubadd 17816 grplactcnv 17831 prdsinvlem 17837 imasgrp 17844 ghmgrp 17852 mulgdirlem 17883 issubg2 17919 isnsg3 17938 nmzsubg 17945 ssnmz 17946 eqger 17954 qusgrp 17959 conjghm 18001 galcan 18046 cntzsubg 18078 lsmmod 18398 lsmdisj2 18405 rngnegr 18908 unitlinv 18990 isdrng2 19072 lmodvneg1 19221 psrlinv 19717 evpmodpmf1o 20261 grpvlinv 20523 tgpconncompeqg 22240 qustgpopn 22248 clmvslinv 23232 ogrpinv0le 30224 ogrpaddltrbid 30229 ogrpinv0lt 30231 ogrpinvlt 30232 lflnegl 35089 dvhgrp 37120 |
Copyright terms: Public domain | W3C validator |