MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grplinv Structured version   Visualization version   GIF version

Theorem grplinv 18910
Description: The left inverse of a group element. (Contributed by NM, 24-Aug-2011.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
grpinv.b 𝐵 = (Base‘𝐺)
grpinv.p + = (+g𝐺)
grpinv.u 0 = (0g𝐺)
grpinv.n 𝑁 = (invg𝐺)
Assertion
Ref Expression
grplinv ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 𝑋) = 0 )

Proof of Theorem grplinv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grpinv.b . . . . 5 𝐵 = (Base‘𝐺)
2 grpinv.p . . . . 5 + = (+g𝐺)
3 grpinv.u . . . . 5 0 = (0g𝐺)
4 grpinv.n . . . . 5 𝑁 = (invg𝐺)
51, 2, 3, 4grpinvval 18901 . . . 4 (𝑋𝐵 → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
65adantl 482 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) = (𝑦𝐵 (𝑦 + 𝑋) = 0 ))
71, 2, 3grpinveu 18895 . . . 4 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ∃!𝑦𝐵 (𝑦 + 𝑋) = 0 )
8 riotacl2 7384 . . . 4 (∃!𝑦𝐵 (𝑦 + 𝑋) = 0 → (𝑦𝐵 (𝑦 + 𝑋) = 0 ) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 })
97, 8syl 17 . . 3 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑦𝐵 (𝑦 + 𝑋) = 0 ) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 })
106, 9eqeltrd 2833 . 2 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → (𝑁𝑋) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 })
11 oveq1 7418 . . . . 5 (𝑦 = (𝑁𝑋) → (𝑦 + 𝑋) = ((𝑁𝑋) + 𝑋))
1211eqeq1d 2734 . . . 4 (𝑦 = (𝑁𝑋) → ((𝑦 + 𝑋) = 0 ↔ ((𝑁𝑋) + 𝑋) = 0 ))
1312elrab 3683 . . 3 ((𝑁𝑋) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 } ↔ ((𝑁𝑋) ∈ 𝐵 ∧ ((𝑁𝑋) + 𝑋) = 0 ))
1413simprbi 497 . 2 ((𝑁𝑋) ∈ {𝑦𝐵 ∣ (𝑦 + 𝑋) = 0 } → ((𝑁𝑋) + 𝑋) = 0 )
1510, 14syl 17 1 ((𝐺 ∈ Grp ∧ 𝑋𝐵) → ((𝑁𝑋) + 𝑋) = 0 )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  ∃!wreu 3374  {crab 3432  cfv 6543  crio 7366  (class class class)co 7411  Basecbs 17148  +gcplusg 17201  0gc0g 17389  Grpcgrp 18855  invgcminusg 18856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-fv 6551  df-riota 7367  df-ov 7414  df-0g 17391  df-mgm 18565  df-sgrp 18644  df-mnd 18660  df-grp 18858  df-minusg 18859
This theorem is referenced by:  grprinv  18911  grpinvid1  18912  grpinvid2  18913  isgrpinv  18914  grplinvd  18915  grplrinv  18917  grplcan  18921  grpasscan2  18923  grpinvinv  18926  grpinvssd  18936  grpsubadd  18947  grplactcnv  18962  prdsinvlem  18968  imasgrp  18975  ghmgrp  18985  mulgdirlem  19021  issubg2  19057  isnsg3  19076  nmzsubg  19081  ssnmz  19082  eqger  19094  qusgrp  19101  conjghm  19163  galcan  19209  cntzsubg  19244  lsmmod  19584  lsmdisj2  19591  ringnegr  20191  unitlinv  20284  isdrng2  20514  lmodvneg1  20659  evpmodpmf1o  21368  psrlinv  21735  grpvlinv  22117  tgpconncompeqg  23836  qustgpopn  23844  clmvslinv  24848  ogrpinv0le  32491  ogrpaddltrbid  32496  ogrpinv0lt  32498  ogrpinvlt  32499  quslsm  32778  lflnegl  38249  dvhgrp  40281
  Copyright terms: Public domain W3C validator