MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinv Structured version   Visualization version   GIF version

Theorem grpoinv 28887
Description: The properties of a group element's inverse. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinv.1 𝑋 = ran 𝐺
grpinv.2 𝑈 = (GId‘𝐺)
grpinv.3 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinv ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑁𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁𝐴)) = 𝑈))

Proof of Theorem grpoinv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grpinv.1 . . . . . 6 𝑋 = ran 𝐺
2 grpinv.2 . . . . . 6 𝑈 = (GId‘𝐺)
3 grpinv.3 . . . . . 6 𝑁 = (inv‘𝐺)
41, 2, 3grpoinvval 28885 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈))
51, 2grpoinveu 28881 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈)
6 riotacl2 7249 . . . . . 6 (∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈 → (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈) ∈ {𝑦𝑋 ∣ (𝑦𝐺𝐴) = 𝑈})
75, 6syl 17 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈) ∈ {𝑦𝑋 ∣ (𝑦𝐺𝐴) = 𝑈})
84, 7eqeltrd 2839 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ {𝑦𝑋 ∣ (𝑦𝐺𝐴) = 𝑈})
9 simpl 483 . . . . . . . . 9 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈)
109rgenw 3076 . . . . . . . 8 𝑦𝑋 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈)
1110a1i 11 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∀𝑦𝑋 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈))
121, 2grpoidinv2 28877 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
1312simprd 496 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))
1411, 13, 53jca 1127 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (∀𝑦𝑋 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) ∧ ∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈))
15 reupick2 4254 . . . . . 6 (((∀𝑦𝑋 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) ∧ ∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈) ∧ 𝑦𝑋) → ((𝑦𝐺𝐴) = 𝑈 ↔ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
1614, 15sylan 580 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → ((𝑦𝐺𝐴) = 𝑈 ↔ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
1716rabbidva 3413 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → {𝑦𝑋 ∣ (𝑦𝐺𝐴) = 𝑈} = {𝑦𝑋 ∣ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)})
188, 17eleqtrd 2841 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ {𝑦𝑋 ∣ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)})
19 oveq1 7282 . . . . . 6 (𝑦 = (𝑁𝐴) → (𝑦𝐺𝐴) = ((𝑁𝐴)𝐺𝐴))
2019eqeq1d 2740 . . . . 5 (𝑦 = (𝑁𝐴) → ((𝑦𝐺𝐴) = 𝑈 ↔ ((𝑁𝐴)𝐺𝐴) = 𝑈))
21 oveq2 7283 . . . . . 6 (𝑦 = (𝑁𝐴) → (𝐴𝐺𝑦) = (𝐴𝐺(𝑁𝐴)))
2221eqeq1d 2740 . . . . 5 (𝑦 = (𝑁𝐴) → ((𝐴𝐺𝑦) = 𝑈 ↔ (𝐴𝐺(𝑁𝐴)) = 𝑈))
2320, 22anbi12d 631 . . . 4 (𝑦 = (𝑁𝐴) → (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) ↔ (((𝑁𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁𝐴)) = 𝑈)))
2423elrab 3624 . . 3 ((𝑁𝐴) ∈ {𝑦𝑋 ∣ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)} ↔ ((𝑁𝐴) ∈ 𝑋 ∧ (((𝑁𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁𝐴)) = 𝑈)))
2518, 24sylib 217 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴) ∈ 𝑋 ∧ (((𝑁𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁𝐴)) = 𝑈)))
2625simprd 496 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑁𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁𝐴)) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  ∃!wreu 3066  {crab 3068  ran crn 5590  cfv 6433  crio 7231  (class class class)co 7275  GrpOpcgr 28851  GIdcgi 28852  invcgn 28853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-grpo 28855  df-gid 28856  df-ginv 28857
This theorem is referenced by:  grpolinv  28888  grporinv  28889
  Copyright terms: Public domain W3C validator