MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinv Structured version   Visualization version   GIF version

Theorem grpoinv 28473
Description: The properties of a group element's inverse. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinv.1 𝑋 = ran 𝐺
grpinv.2 𝑈 = (GId‘𝐺)
grpinv.3 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinv ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑁𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁𝐴)) = 𝑈))

Proof of Theorem grpoinv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grpinv.1 . . . . . 6 𝑋 = ran 𝐺
2 grpinv.2 . . . . . 6 𝑈 = (GId‘𝐺)
3 grpinv.3 . . . . . 6 𝑁 = (inv‘𝐺)
41, 2, 3grpoinvval 28471 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈))
51, 2grpoinveu 28467 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈)
6 riotacl2 7157 . . . . . 6 (∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈 → (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈) ∈ {𝑦𝑋 ∣ (𝑦𝐺𝐴) = 𝑈})
75, 6syl 17 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈) ∈ {𝑦𝑋 ∣ (𝑦𝐺𝐴) = 𝑈})
84, 7eqeltrd 2834 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ {𝑦𝑋 ∣ (𝑦𝐺𝐴) = 𝑈})
9 simpl 486 . . . . . . . . 9 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈)
109rgenw 3066 . . . . . . . 8 𝑦𝑋 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈)
1110a1i 11 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∀𝑦𝑋 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈))
121, 2grpoidinv2 28463 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
1312simprd 499 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))
1411, 13, 53jca 1129 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (∀𝑦𝑋 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) ∧ ∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈))
15 reupick2 4219 . . . . . 6 (((∀𝑦𝑋 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) ∧ ∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈) ∧ 𝑦𝑋) → ((𝑦𝐺𝐴) = 𝑈 ↔ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
1614, 15sylan 583 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → ((𝑦𝐺𝐴) = 𝑈 ↔ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
1716rabbidva 3380 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → {𝑦𝑋 ∣ (𝑦𝐺𝐴) = 𝑈} = {𝑦𝑋 ∣ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)})
188, 17eleqtrd 2836 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ {𝑦𝑋 ∣ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)})
19 oveq1 7190 . . . . . 6 (𝑦 = (𝑁𝐴) → (𝑦𝐺𝐴) = ((𝑁𝐴)𝐺𝐴))
2019eqeq1d 2741 . . . . 5 (𝑦 = (𝑁𝐴) → ((𝑦𝐺𝐴) = 𝑈 ↔ ((𝑁𝐴)𝐺𝐴) = 𝑈))
21 oveq2 7191 . . . . . 6 (𝑦 = (𝑁𝐴) → (𝐴𝐺𝑦) = (𝐴𝐺(𝑁𝐴)))
2221eqeq1d 2741 . . . . 5 (𝑦 = (𝑁𝐴) → ((𝐴𝐺𝑦) = 𝑈 ↔ (𝐴𝐺(𝑁𝐴)) = 𝑈))
2320, 22anbi12d 634 . . . 4 (𝑦 = (𝑁𝐴) → (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) ↔ (((𝑁𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁𝐴)) = 𝑈)))
2423elrab 3593 . . 3 ((𝑁𝐴) ∈ {𝑦𝑋 ∣ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)} ↔ ((𝑁𝐴) ∈ 𝑋 ∧ (((𝑁𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁𝐴)) = 𝑈)))
2518, 24sylib 221 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴) ∈ 𝑋 ∧ (((𝑁𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁𝐴)) = 𝑈)))
2625simprd 499 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑁𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁𝐴)) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  wral 3054  wrex 3055  ∃!wreu 3056  {crab 3058  ran crn 5536  cfv 6350  crio 7139  (class class class)co 7183  GrpOpcgr 28437  GIdcgi 28438  invcgn 28439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5306  ax-un 7492
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7140  df-ov 7186  df-grpo 28441  df-gid 28442  df-ginv 28443
This theorem is referenced by:  grpolinv  28474  grporinv  28475
  Copyright terms: Public domain W3C validator