| Step | Hyp | Ref
| Expression |
| 1 | | grpinv.1 |
. . . . . 6
⊢ 𝑋 = ran 𝐺 |
| 2 | | grpinv.2 |
. . . . . 6
⊢ 𝑈 = (GId‘𝐺) |
| 3 | | grpinv.3 |
. . . . . 6
⊢ 𝑁 = (inv‘𝐺) |
| 4 | 1, 2, 3 | grpoinvval 30543 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
| 5 | 1, 2 | grpoinveu 30539 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ∃!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) |
| 6 | | riotacl2 7405 |
. . . . . 6
⊢
(∃!𝑦 ∈
𝑋 (𝑦𝐺𝐴) = 𝑈 → (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) ∈ {𝑦 ∈ 𝑋 ∣ (𝑦𝐺𝐴) = 𝑈}) |
| 7 | 5, 6 | syl 17 |
. . . . 5
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (℩𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) ∈ {𝑦 ∈ 𝑋 ∣ (𝑦𝐺𝐴) = 𝑈}) |
| 8 | 4, 7 | eqeltrd 2840 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ {𝑦 ∈ 𝑋 ∣ (𝑦𝐺𝐴) = 𝑈}) |
| 9 | | simpl 482 |
. . . . . . . . 9
⊢ (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈) |
| 10 | 9 | rgenw 3064 |
. . . . . . . 8
⊢
∀𝑦 ∈
𝑋 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈) |
| 11 | 10 | a1i 11 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ∀𝑦 ∈ 𝑋 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈)) |
| 12 | 1, 2 | grpoidinv2 30535 |
. . . . . . . 8
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))) |
| 13 | 12 | simprd 495 |
. . . . . . 7
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)) |
| 14 | 11, 13, 5 | 3jca 1128 |
. . . . . 6
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (∀𝑦 ∈ 𝑋 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) ∧ ∃!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈)) |
| 15 | | reupick2 4330 |
. . . . . 6
⊢
(((∀𝑦 ∈
𝑋 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈) ∧ ∃𝑦 ∈ 𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) ∧ ∃!𝑦 ∈ 𝑋 (𝑦𝐺𝐴) = 𝑈) ∧ 𝑦 ∈ 𝑋) → ((𝑦𝐺𝐴) = 𝑈 ↔ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))) |
| 16 | 14, 15 | sylan 580 |
. . . . 5
⊢ (((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) ∧ 𝑦 ∈ 𝑋) → ((𝑦𝐺𝐴) = 𝑈 ↔ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))) |
| 17 | 16 | rabbidva 3442 |
. . . 4
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → {𝑦 ∈ 𝑋 ∣ (𝑦𝐺𝐴) = 𝑈} = {𝑦 ∈ 𝑋 ∣ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)}) |
| 18 | 8, 17 | eleqtrd 2842 |
. . 3
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) ∈ {𝑦 ∈ 𝑋 ∣ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)}) |
| 19 | | oveq1 7439 |
. . . . . 6
⊢ (𝑦 = (𝑁‘𝐴) → (𝑦𝐺𝐴) = ((𝑁‘𝐴)𝐺𝐴)) |
| 20 | 19 | eqeq1d 2738 |
. . . . 5
⊢ (𝑦 = (𝑁‘𝐴) → ((𝑦𝐺𝐴) = 𝑈 ↔ ((𝑁‘𝐴)𝐺𝐴) = 𝑈)) |
| 21 | | oveq2 7440 |
. . . . . 6
⊢ (𝑦 = (𝑁‘𝐴) → (𝐴𝐺𝑦) = (𝐴𝐺(𝑁‘𝐴))) |
| 22 | 21 | eqeq1d 2738 |
. . . . 5
⊢ (𝑦 = (𝑁‘𝐴) → ((𝐴𝐺𝑦) = 𝑈 ↔ (𝐴𝐺(𝑁‘𝐴)) = 𝑈)) |
| 23 | 20, 22 | anbi12d 632 |
. . . 4
⊢ (𝑦 = (𝑁‘𝐴) → (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) ↔ (((𝑁‘𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁‘𝐴)) = 𝑈))) |
| 24 | 23 | elrab 3691 |
. . 3
⊢ ((𝑁‘𝐴) ∈ {𝑦 ∈ 𝑋 ∣ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)} ↔ ((𝑁‘𝐴) ∈ 𝑋 ∧ (((𝑁‘𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁‘𝐴)) = 𝑈))) |
| 25 | 18, 24 | sylib 218 |
. 2
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → ((𝑁‘𝐴) ∈ 𝑋 ∧ (((𝑁‘𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁‘𝐴)) = 𝑈))) |
| 26 | 25 | simprd 495 |
1
⊢ ((𝐺 ∈ GrpOp ∧ 𝐴 ∈ 𝑋) → (((𝑁‘𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁‘𝐴)) = 𝑈)) |