MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpoinv Structured version   Visualization version   GIF version

Theorem grpoinv 30557
Description: The properties of a group element's inverse. (Contributed by NM, 27-Oct-2006.) (Revised by Mario Carneiro, 15-Dec-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
grpinv.1 𝑋 = ran 𝐺
grpinv.2 𝑈 = (GId‘𝐺)
grpinv.3 𝑁 = (inv‘𝐺)
Assertion
Ref Expression
grpoinv ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑁𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁𝐴)) = 𝑈))

Proof of Theorem grpoinv
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 grpinv.1 . . . . . 6 𝑋 = ran 𝐺
2 grpinv.2 . . . . . 6 𝑈 = (GId‘𝐺)
3 grpinv.3 . . . . . 6 𝑁 = (inv‘𝐺)
41, 2, 3grpoinvval 30555 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) = (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈))
51, 2grpoinveu 30551 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈)
6 riotacl2 7421 . . . . . 6 (∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈 → (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈) ∈ {𝑦𝑋 ∣ (𝑦𝐺𝐴) = 𝑈})
75, 6syl 17 . . . . 5 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑦𝑋 (𝑦𝐺𝐴) = 𝑈) ∈ {𝑦𝑋 ∣ (𝑦𝐺𝐴) = 𝑈})
84, 7eqeltrd 2844 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ {𝑦𝑋 ∣ (𝑦𝐺𝐴) = 𝑈})
9 simpl 482 . . . . . . . . 9 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈)
109rgenw 3071 . . . . . . . 8 𝑦𝑋 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈)
1110a1i 11 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∀𝑦𝑋 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈))
121, 2grpoidinv2 30547 . . . . . . . 8 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑈𝐺𝐴) = 𝐴 ∧ (𝐴𝐺𝑈) = 𝐴) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
1312simprd 495 . . . . . . 7 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈))
1411, 13, 53jca 1128 . . . . . 6 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (∀𝑦𝑋 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) ∧ ∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈))
15 reupick2 4350 . . . . . 6 (((∀𝑦𝑋 (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) → (𝑦𝐺𝐴) = 𝑈) ∧ ∃𝑦𝑋 ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) ∧ ∃!𝑦𝑋 (𝑦𝐺𝐴) = 𝑈) ∧ 𝑦𝑋) → ((𝑦𝐺𝐴) = 𝑈 ↔ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
1614, 15sylan 579 . . . . 5 (((𝐺 ∈ GrpOp ∧ 𝐴𝑋) ∧ 𝑦𝑋) → ((𝑦𝐺𝐴) = 𝑈 ↔ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)))
1716rabbidva 3450 . . . 4 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → {𝑦𝑋 ∣ (𝑦𝐺𝐴) = 𝑈} = {𝑦𝑋 ∣ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)})
188, 17eleqtrd 2846 . . 3 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (𝑁𝐴) ∈ {𝑦𝑋 ∣ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)})
19 oveq1 7455 . . . . . 6 (𝑦 = (𝑁𝐴) → (𝑦𝐺𝐴) = ((𝑁𝐴)𝐺𝐴))
2019eqeq1d 2742 . . . . 5 (𝑦 = (𝑁𝐴) → ((𝑦𝐺𝐴) = 𝑈 ↔ ((𝑁𝐴)𝐺𝐴) = 𝑈))
21 oveq2 7456 . . . . . 6 (𝑦 = (𝑁𝐴) → (𝐴𝐺𝑦) = (𝐴𝐺(𝑁𝐴)))
2221eqeq1d 2742 . . . . 5 (𝑦 = (𝑁𝐴) → ((𝐴𝐺𝑦) = 𝑈 ↔ (𝐴𝐺(𝑁𝐴)) = 𝑈))
2320, 22anbi12d 631 . . . 4 (𝑦 = (𝑁𝐴) → (((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈) ↔ (((𝑁𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁𝐴)) = 𝑈)))
2423elrab 3708 . . 3 ((𝑁𝐴) ∈ {𝑦𝑋 ∣ ((𝑦𝐺𝐴) = 𝑈 ∧ (𝐴𝐺𝑦) = 𝑈)} ↔ ((𝑁𝐴) ∈ 𝑋 ∧ (((𝑁𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁𝐴)) = 𝑈)))
2518, 24sylib 218 . 2 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → ((𝑁𝐴) ∈ 𝑋 ∧ (((𝑁𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁𝐴)) = 𝑈)))
2625simprd 495 1 ((𝐺 ∈ GrpOp ∧ 𝐴𝑋) → (((𝑁𝐴)𝐺𝐴) = 𝑈 ∧ (𝐴𝐺(𝑁𝐴)) = 𝑈))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  ∃!wreu 3386  {crab 3443  ran crn 5701  cfv 6573  crio 7403  (class class class)co 7448  GrpOpcgr 30521  GIdcgi 30522  invcgn 30523
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-grpo 30525  df-gid 30526  df-ginv 30527
This theorem is referenced by:  grpolinv  30558  grporinv  30559
  Copyright terms: Public domain W3C validator