Step | Hyp | Ref
| Expression |
1 | | evlsval.q |
. . . 4
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
2 | | evlsval.w |
. . . 4
⊢ 𝑊 = (𝐼 mPoly 𝑈) |
3 | | evlsval.v |
. . . 4
⊢ 𝑉 = (𝐼 mVar 𝑈) |
4 | | evlsval.u |
. . . 4
⊢ 𝑈 = (𝑆 ↾s 𝑅) |
5 | | evlsval.t |
. . . 4
⊢ 𝑇 = (𝑆 ↑s (𝐵 ↑m 𝐼)) |
6 | | evlsval.b |
. . . 4
⊢ 𝐵 = (Base‘𝑆) |
7 | | evlsval.a |
. . . 4
⊢ 𝐴 = (algSc‘𝑊) |
8 | | evlsval.x |
. . . 4
⊢ 𝑋 = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) |
9 | | evlsval.y |
. . . 4
⊢ 𝑌 = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥))) |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | evlsval 21496 |
. . 3
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = (℩𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚 ∘ 𝐴) = 𝑋 ∧ (𝑚 ∘ 𝑉) = 𝑌))) |
11 | | eqid 2736 |
. . . . 5
⊢
(Base‘𝑇) =
(Base‘𝑇) |
12 | | simp1 1136 |
. . . . 5
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝐼 ∈ 𝑍) |
13 | 4 | subrgcrng 20226 |
. . . . . 6
⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing) |
14 | 13 | 3adant1 1130 |
. . . . 5
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing) |
15 | | simp2 1137 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑆 ∈ CRing) |
16 | | ovex 7390 |
. . . . . 6
⊢ (𝐵 ↑m 𝐼) ∈ V |
17 | 5 | pwscrng 20041 |
. . . . . 6
⊢ ((𝑆 ∈ CRing ∧ (𝐵 ↑m 𝐼) ∈ V) → 𝑇 ∈ CRing) |
18 | 15, 16, 17 | sylancl 586 |
. . . . 5
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑇 ∈ CRing) |
19 | 6 | subrgss 20223 |
. . . . . . . . 9
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) |
20 | 19 | 3ad2ant3 1135 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ⊆ 𝐵) |
21 | 20 | resmptd 5994 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥 ∈ 𝐵 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ↾ 𝑅) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥}))) |
22 | 21, 8 | eqtr4di 2794 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥 ∈ 𝐵 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ↾ 𝑅) = 𝑋) |
23 | | crngring 19976 |
. . . . . . . . 9
⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) |
24 | 23 | 3ad2ant2 1134 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑆 ∈ Ring) |
25 | | eqid 2736 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝐵 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) = (𝑥 ∈ 𝐵 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) |
26 | 5, 6, 25 | pwsdiagrhm 20256 |
. . . . . . . 8
⊢ ((𝑆 ∈ Ring ∧ (𝐵 ↑m 𝐼) ∈ V) → (𝑥 ∈ 𝐵 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇)) |
27 | 24, 16, 26 | sylancl 586 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑥 ∈ 𝐵 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇)) |
28 | | simp3 1138 |
. . . . . . 7
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ (SubRing‘𝑆)) |
29 | 4 | resrhm 20251 |
. . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇) ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥 ∈ 𝐵 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ↾ 𝑅) ∈ (𝑈 RingHom 𝑇)) |
30 | 27, 28, 29 | syl2anc 584 |
. . . . . 6
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥 ∈ 𝐵 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ↾ 𝑅) ∈ (𝑈 RingHom 𝑇)) |
31 | 22, 30 | eqeltrrd 2839 |
. . . . 5
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑋 ∈ (𝑈 RingHom 𝑇)) |
32 | 6 | fvexi 6856 |
. . . . . . . . . . 11
⊢ 𝐵 ∈ V |
33 | | simpl1 1191 |
. . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑍) |
34 | | elmapg 8778 |
. . . . . . . . . . 11
⊢ ((𝐵 ∈ V ∧ 𝐼 ∈ 𝑍) → (𝑔 ∈ (𝐵 ↑m 𝐼) ↔ 𝑔:𝐼⟶𝐵)) |
35 | 32, 33, 34 | sylancr 587 |
. . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥 ∈ 𝐼) → (𝑔 ∈ (𝐵 ↑m 𝐼) ↔ 𝑔:𝐼⟶𝐵)) |
36 | 35 | biimpa 477 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑔 ∈ (𝐵 ↑m 𝐼)) → 𝑔:𝐼⟶𝐵) |
37 | | simplr 767 |
. . . . . . . . 9
⊢ ((((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑔 ∈ (𝐵 ↑m 𝐼)) → 𝑥 ∈ 𝐼) |
38 | 36, 37 | ffvelcdmd 7036 |
. . . . . . . 8
⊢ ((((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑔 ∈ (𝐵 ↑m 𝐼)) → (𝑔‘𝑥) ∈ 𝐵) |
39 | 38 | fmpttd 7063 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥 ∈ 𝐼) → (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)):(𝐵 ↑m 𝐼)⟶𝐵) |
40 | | simpl2 1192 |
. . . . . . . 8
⊢ (((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ CRing) |
41 | 5, 6, 11 | pwselbasb 17370 |
. . . . . . . 8
⊢ ((𝑆 ∈ CRing ∧ (𝐵 ↑m 𝐼) ∈ V) → ((𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)) ∈ (Base‘𝑇) ↔ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)):(𝐵 ↑m 𝐼)⟶𝐵)) |
42 | 40, 16, 41 | sylancl 586 |
. . . . . . 7
⊢ (((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥 ∈ 𝐼) → ((𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)) ∈ (Base‘𝑇) ↔ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)):(𝐵 ↑m 𝐼)⟶𝐵)) |
43 | 39, 42 | mpbird 256 |
. . . . . 6
⊢ (((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥 ∈ 𝐼) → (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)) ∈ (Base‘𝑇)) |
44 | 43, 9 | fmptd 7062 |
. . . . 5
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑌:𝐼⟶(Base‘𝑇)) |
45 | 2, 11, 7, 3, 12, 14, 18, 31, 44 | evlseu 21493 |
. . . 4
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ∃!𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚 ∘ 𝐴) = 𝑋 ∧ (𝑚 ∘ 𝑉) = 𝑌)) |
46 | | riotacl2 7330 |
. . . 4
⊢
(∃!𝑚 ∈
(𝑊 RingHom 𝑇)((𝑚 ∘ 𝐴) = 𝑋 ∧ (𝑚 ∘ 𝑉) = 𝑌) → (℩𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚 ∘ 𝐴) = 𝑋 ∧ (𝑚 ∘ 𝑉) = 𝑌)) ∈ {𝑚 ∈ (𝑊 RingHom 𝑇) ∣ ((𝑚 ∘ 𝐴) = 𝑋 ∧ (𝑚 ∘ 𝑉) = 𝑌)}) |
47 | 45, 46 | syl 17 |
. . 3
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (℩𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚 ∘ 𝐴) = 𝑋 ∧ (𝑚 ∘ 𝑉) = 𝑌)) ∈ {𝑚 ∈ (𝑊 RingHom 𝑇) ∣ ((𝑚 ∘ 𝐴) = 𝑋 ∧ (𝑚 ∘ 𝑉) = 𝑌)}) |
48 | 10, 47 | eqeltrd 2838 |
. 2
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ {𝑚 ∈ (𝑊 RingHom 𝑇) ∣ ((𝑚 ∘ 𝐴) = 𝑋 ∧ (𝑚 ∘ 𝑉) = 𝑌)}) |
49 | | coeq1 5813 |
. . . . 5
⊢ (𝑚 = 𝑄 → (𝑚 ∘ 𝐴) = (𝑄 ∘ 𝐴)) |
50 | 49 | eqeq1d 2738 |
. . . 4
⊢ (𝑚 = 𝑄 → ((𝑚 ∘ 𝐴) = 𝑋 ↔ (𝑄 ∘ 𝐴) = 𝑋)) |
51 | | coeq1 5813 |
. . . . 5
⊢ (𝑚 = 𝑄 → (𝑚 ∘ 𝑉) = (𝑄 ∘ 𝑉)) |
52 | 51 | eqeq1d 2738 |
. . . 4
⊢ (𝑚 = 𝑄 → ((𝑚 ∘ 𝑉) = 𝑌 ↔ (𝑄 ∘ 𝑉) = 𝑌)) |
53 | 50, 52 | anbi12d 631 |
. . 3
⊢ (𝑚 = 𝑄 → (((𝑚 ∘ 𝐴) = 𝑋 ∧ (𝑚 ∘ 𝑉) = 𝑌) ↔ ((𝑄 ∘ 𝐴) = 𝑋 ∧ (𝑄 ∘ 𝑉) = 𝑌))) |
54 | 53 | elrab 3645 |
. 2
⊢ (𝑄 ∈ {𝑚 ∈ (𝑊 RingHom 𝑇) ∣ ((𝑚 ∘ 𝐴) = 𝑋 ∧ (𝑚 ∘ 𝑉) = 𝑌)} ↔ (𝑄 ∈ (𝑊 RingHom 𝑇) ∧ ((𝑄 ∘ 𝐴) = 𝑋 ∧ (𝑄 ∘ 𝑉) = 𝑌))) |
55 | 48, 54 | sylib 217 |
1
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ (𝑊 RingHom 𝑇) ∧ ((𝑄 ∘ 𝐴) = 𝑋 ∧ (𝑄 ∘ 𝑉) = 𝑌))) |