MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlsval2 Structured version   Visualization version   GIF version

Theorem evlsval2 21047
Description: Characterizing properties of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Revised by AV, 18-Sep-2021.)
Hypotheses
Ref Expression
evlsval.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsval.w 𝑊 = (𝐼 mPoly 𝑈)
evlsval.v 𝑉 = (𝐼 mVar 𝑈)
evlsval.u 𝑈 = (𝑆s 𝑅)
evlsval.t 𝑇 = (𝑆s (𝐵m 𝐼))
evlsval.b 𝐵 = (Base‘𝑆)
evlsval.a 𝐴 = (algSc‘𝑊)
evlsval.x 𝑋 = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥}))
evlsval.y 𝑌 = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)))
Assertion
Ref Expression
evlsval2 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ (𝑊 RingHom 𝑇) ∧ ((𝑄𝐴) = 𝑋 ∧ (𝑄𝑉) = 𝑌)))
Distinct variable groups:   𝑔,𝐼,𝑥   𝑥,𝑅   𝑆,𝑔,𝑥   𝐵,𝑔,𝑥   𝑅,𝑔   𝑥,𝑇   𝑔,𝑍,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑔)   𝑄(𝑥,𝑔)   𝑇(𝑔)   𝑈(𝑥,𝑔)   𝑉(𝑥,𝑔)   𝑊(𝑥,𝑔)   𝑋(𝑥,𝑔)   𝑌(𝑥,𝑔)

Proof of Theorem evlsval2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 evlsval.q . . . 4 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
2 evlsval.w . . . 4 𝑊 = (𝐼 mPoly 𝑈)
3 evlsval.v . . . 4 𝑉 = (𝐼 mVar 𝑈)
4 evlsval.u . . . 4 𝑈 = (𝑆s 𝑅)
5 evlsval.t . . . 4 𝑇 = (𝑆s (𝐵m 𝐼))
6 evlsval.b . . . 4 𝐵 = (Base‘𝑆)
7 evlsval.a . . . 4 𝐴 = (algSc‘𝑊)
8 evlsval.x . . . 4 𝑋 = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥}))
9 evlsval.y . . . 4 𝑌 = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)))
101, 2, 3, 4, 5, 6, 7, 8, 9evlsval 21046 . . 3 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = (𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)))
11 eqid 2737 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
12 simp1 1138 . . . . 5 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝐼𝑍)
134subrgcrng 19804 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing)
14133adant1 1132 . . . . 5 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing)
15 simp2 1139 . . . . . 6 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑆 ∈ CRing)
16 ovex 7246 . . . . . 6 (𝐵m 𝐼) ∈ V
175pwscrng 19635 . . . . . 6 ((𝑆 ∈ CRing ∧ (𝐵m 𝐼) ∈ V) → 𝑇 ∈ CRing)
1815, 16, 17sylancl 589 . . . . 5 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑇 ∈ CRing)
196subrgss 19801 . . . . . . . . 9 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
20193ad2ant3 1137 . . . . . . . 8 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅𝐵)
2120resmptd 5908 . . . . . . 7 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥𝐵 ↦ ((𝐵m 𝐼) × {𝑥})) ↾ 𝑅) = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})))
2221, 8eqtr4di 2796 . . . . . 6 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥𝐵 ↦ ((𝐵m 𝐼) × {𝑥})) ↾ 𝑅) = 𝑋)
23 crngring 19574 . . . . . . . . 9 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
24233ad2ant2 1136 . . . . . . . 8 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑆 ∈ Ring)
25 eqid 2737 . . . . . . . . 9 (𝑥𝐵 ↦ ((𝐵m 𝐼) × {𝑥})) = (𝑥𝐵 ↦ ((𝐵m 𝐼) × {𝑥}))
265, 6, 25pwsdiagrhm 19834 . . . . . . . 8 ((𝑆 ∈ Ring ∧ (𝐵m 𝐼) ∈ V) → (𝑥𝐵 ↦ ((𝐵m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇))
2724, 16, 26sylancl 589 . . . . . . 7 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑥𝐵 ↦ ((𝐵m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇))
28 simp3 1140 . . . . . . 7 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ (SubRing‘𝑆))
294resrhm 19829 . . . . . . 7 (((𝑥𝐵 ↦ ((𝐵m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇) ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥𝐵 ↦ ((𝐵m 𝐼) × {𝑥})) ↾ 𝑅) ∈ (𝑈 RingHom 𝑇))
3027, 28, 29syl2anc 587 . . . . . 6 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥𝐵 ↦ ((𝐵m 𝐼) × {𝑥})) ↾ 𝑅) ∈ (𝑈 RingHom 𝑇))
3122, 30eqeltrrd 2839 . . . . 5 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑋 ∈ (𝑈 RingHom 𝑇))
326fvexi 6731 . . . . . . . . . . 11 𝐵 ∈ V
33 simpl1 1193 . . . . . . . . . . 11 (((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) → 𝐼𝑍)
34 elmapg 8521 . . . . . . . . . . 11 ((𝐵 ∈ V ∧ 𝐼𝑍) → (𝑔 ∈ (𝐵m 𝐼) ↔ 𝑔:𝐼𝐵))
3532, 33, 34sylancr 590 . . . . . . . . . 10 (((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) → (𝑔 ∈ (𝐵m 𝐼) ↔ 𝑔:𝐼𝐵))
3635biimpa 480 . . . . . . . . 9 ((((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) ∧ 𝑔 ∈ (𝐵m 𝐼)) → 𝑔:𝐼𝐵)
37 simplr 769 . . . . . . . . 9 ((((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) ∧ 𝑔 ∈ (𝐵m 𝐼)) → 𝑥𝐼)
3836, 37ffvelrnd 6905 . . . . . . . 8 ((((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) ∧ 𝑔 ∈ (𝐵m 𝐼)) → (𝑔𝑥) ∈ 𝐵)
3938fmpttd 6932 . . . . . . 7 (((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) → (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)):(𝐵m 𝐼)⟶𝐵)
40 simpl2 1194 . . . . . . . 8 (((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) → 𝑆 ∈ CRing)
415, 6, 11pwselbasb 16993 . . . . . . . 8 ((𝑆 ∈ CRing ∧ (𝐵m 𝐼) ∈ V) → ((𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)) ∈ (Base‘𝑇) ↔ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)):(𝐵m 𝐼)⟶𝐵))
4240, 16, 41sylancl 589 . . . . . . 7 (((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) → ((𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)) ∈ (Base‘𝑇) ↔ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)):(𝐵m 𝐼)⟶𝐵))
4339, 42mpbird 260 . . . . . 6 (((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) → (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)) ∈ (Base‘𝑇))
4443, 9fmptd 6931 . . . . 5 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑌:𝐼⟶(Base‘𝑇))
452, 11, 7, 3, 12, 14, 18, 31, 44evlseu 21043 . . . 4 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ∃!𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌))
46 riotacl2 7187 . . . 4 (∃!𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌) → (𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)) ∈ {𝑚 ∈ (𝑊 RingHom 𝑇) ∣ ((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)})
4745, 46syl 17 . . 3 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)) ∈ {𝑚 ∈ (𝑊 RingHom 𝑇) ∣ ((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)})
4810, 47eqeltrd 2838 . 2 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ {𝑚 ∈ (𝑊 RingHom 𝑇) ∣ ((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)})
49 coeq1 5726 . . . . 5 (𝑚 = 𝑄 → (𝑚𝐴) = (𝑄𝐴))
5049eqeq1d 2739 . . . 4 (𝑚 = 𝑄 → ((𝑚𝐴) = 𝑋 ↔ (𝑄𝐴) = 𝑋))
51 coeq1 5726 . . . . 5 (𝑚 = 𝑄 → (𝑚𝑉) = (𝑄𝑉))
5251eqeq1d 2739 . . . 4 (𝑚 = 𝑄 → ((𝑚𝑉) = 𝑌 ↔ (𝑄𝑉) = 𝑌))
5350, 52anbi12d 634 . . 3 (𝑚 = 𝑄 → (((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌) ↔ ((𝑄𝐴) = 𝑋 ∧ (𝑄𝑉) = 𝑌)))
5453elrab 3602 . 2 (𝑄 ∈ {𝑚 ∈ (𝑊 RingHom 𝑇) ∣ ((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)} ↔ (𝑄 ∈ (𝑊 RingHom 𝑇) ∧ ((𝑄𝐴) = 𝑋 ∧ (𝑄𝑉) = 𝑌)))
5548, 54sylib 221 1 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ (𝑊 RingHom 𝑇) ∧ ((𝑄𝐴) = 𝑋 ∧ (𝑄𝑉) = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  ∃!wreu 3063  {crab 3065  Vcvv 3408  wss 3866  {csn 4541  cmpt 5135   × cxp 5549  cres 5553  ccom 5555  wf 6376  cfv 6380  crio 7169  (class class class)co 7213  m cmap 8508  Basecbs 16760  s cress 16784  s cpws 16951  Ringcrg 19562  CRingccrg 19563   RingHom crh 19732  SubRingcsubrg 19796  algSccascl 20814   mVar cmvr 20864   mPoly cmpl 20865   evalSub ces 21030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-iin 4907  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-of 7469  df-ofr 7470  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-pm 8511  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-sup 9058  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-hom 16826  df-cco 16827  df-0g 16946  df-gsum 16947  df-prds 16952  df-pws 16954  df-mre 17089  df-mrc 17090  df-acs 17092  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-submnd 18219  df-grp 18368  df-minusg 18369  df-sbg 18370  df-mulg 18489  df-subg 18540  df-ghm 18620  df-cntz 18711  df-cmn 19172  df-abl 19173  df-mgp 19505  df-ur 19517  df-srg 19521  df-ring 19564  df-cring 19565  df-rnghom 19735  df-subrg 19798  df-lmod 19901  df-lss 19969  df-lsp 20009  df-assa 20815  df-asp 20816  df-ascl 20817  df-psr 20868  df-mvr 20869  df-mpl 20870  df-evls 21032
This theorem is referenced by:  evlsrhm  21048  evlssca  21049  evlsvar  21050
  Copyright terms: Public domain W3C validator