| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | evlsval.q | . . . 4
⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | 
| 2 |  | evlsval.w | . . . 4
⊢ 𝑊 = (𝐼 mPoly 𝑈) | 
| 3 |  | evlsval.v | . . . 4
⊢ 𝑉 = (𝐼 mVar 𝑈) | 
| 4 |  | evlsval.u | . . . 4
⊢ 𝑈 = (𝑆 ↾s 𝑅) | 
| 5 |  | evlsval.t | . . . 4
⊢ 𝑇 = (𝑆 ↑s (𝐵 ↑m 𝐼)) | 
| 6 |  | evlsval.b | . . . 4
⊢ 𝐵 = (Base‘𝑆) | 
| 7 |  | evlsval.a | . . . 4
⊢ 𝐴 = (algSc‘𝑊) | 
| 8 |  | evlsval.x | . . . 4
⊢ 𝑋 = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) | 
| 9 |  | evlsval.y | . . . 4
⊢ 𝑌 = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥))) | 
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | evlsval 22111 | . . 3
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = (℩𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚 ∘ 𝐴) = 𝑋 ∧ (𝑚 ∘ 𝑉) = 𝑌))) | 
| 11 |  | eqid 2736 | . . . . 5
⊢
(Base‘𝑇) =
(Base‘𝑇) | 
| 12 |  | simp1 1136 | . . . . 5
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝐼 ∈ 𝑍) | 
| 13 | 4 | subrgcrng 20576 | . . . . . 6
⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing) | 
| 14 | 13 | 3adant1 1130 | . . . . 5
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing) | 
| 15 |  | simp2 1137 | . . . . . 6
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑆 ∈ CRing) | 
| 16 |  | ovex 7465 | . . . . . 6
⊢ (𝐵 ↑m 𝐼) ∈ V | 
| 17 | 5 | pwscrng 20324 | . . . . . 6
⊢ ((𝑆 ∈ CRing ∧ (𝐵 ↑m 𝐼) ∈ V) → 𝑇 ∈ CRing) | 
| 18 | 15, 16, 17 | sylancl 586 | . . . . 5
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑇 ∈ CRing) | 
| 19 | 6 | subrgss 20573 | . . . . . . . . 9
⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑅 ⊆ 𝐵) | 
| 20 | 19 | 3ad2ant3 1135 | . . . . . . . 8
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ⊆ 𝐵) | 
| 21 | 20 | resmptd 6057 | . . . . . . 7
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥 ∈ 𝐵 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ↾ 𝑅) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥}))) | 
| 22 | 21, 8 | eqtr4di 2794 | . . . . . 6
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥 ∈ 𝐵 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ↾ 𝑅) = 𝑋) | 
| 23 |  | crngring 20243 | . . . . . . . . 9
⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) | 
| 24 | 23 | 3ad2ant2 1134 | . . . . . . . 8
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑆 ∈ Ring) | 
| 25 |  | eqid 2736 | . . . . . . . . 9
⊢ (𝑥 ∈ 𝐵 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) = (𝑥 ∈ 𝐵 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) | 
| 26 | 5, 6, 25 | pwsdiagrhm 20608 | . . . . . . . 8
⊢ ((𝑆 ∈ Ring ∧ (𝐵 ↑m 𝐼) ∈ V) → (𝑥 ∈ 𝐵 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇)) | 
| 27 | 24, 16, 26 | sylancl 586 | . . . . . . 7
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑥 ∈ 𝐵 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇)) | 
| 28 |  | simp3 1138 | . . . . . . 7
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ (SubRing‘𝑆)) | 
| 29 | 4 | resrhm 20602 | . . . . . . 7
⊢ (((𝑥 ∈ 𝐵 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇) ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥 ∈ 𝐵 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ↾ 𝑅) ∈ (𝑈 RingHom 𝑇)) | 
| 30 | 27, 28, 29 | syl2anc 584 | . . . . . 6
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥 ∈ 𝐵 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ↾ 𝑅) ∈ (𝑈 RingHom 𝑇)) | 
| 31 | 22, 30 | eqeltrrd 2841 | . . . . 5
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑋 ∈ (𝑈 RingHom 𝑇)) | 
| 32 | 6 | fvexi 6919 | . . . . . . . . . . 11
⊢ 𝐵 ∈ V | 
| 33 |  | simpl1 1191 | . . . . . . . . . . 11
⊢ (((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥 ∈ 𝐼) → 𝐼 ∈ 𝑍) | 
| 34 |  | elmapg 8880 | . . . . . . . . . . 11
⊢ ((𝐵 ∈ V ∧ 𝐼 ∈ 𝑍) → (𝑔 ∈ (𝐵 ↑m 𝐼) ↔ 𝑔:𝐼⟶𝐵)) | 
| 35 | 32, 33, 34 | sylancr 587 | . . . . . . . . . 10
⊢ (((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥 ∈ 𝐼) → (𝑔 ∈ (𝐵 ↑m 𝐼) ↔ 𝑔:𝐼⟶𝐵)) | 
| 36 | 35 | biimpa 476 | . . . . . . . . 9
⊢ ((((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑔 ∈ (𝐵 ↑m 𝐼)) → 𝑔:𝐼⟶𝐵) | 
| 37 |  | simplr 768 | . . . . . . . . 9
⊢ ((((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑔 ∈ (𝐵 ↑m 𝐼)) → 𝑥 ∈ 𝐼) | 
| 38 | 36, 37 | ffvelcdmd 7104 | . . . . . . . 8
⊢ ((((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥 ∈ 𝐼) ∧ 𝑔 ∈ (𝐵 ↑m 𝐼)) → (𝑔‘𝑥) ∈ 𝐵) | 
| 39 | 38 | fmpttd 7134 | . . . . . . 7
⊢ (((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥 ∈ 𝐼) → (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)):(𝐵 ↑m 𝐼)⟶𝐵) | 
| 40 |  | simpl2 1192 | . . . . . . . 8
⊢ (((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥 ∈ 𝐼) → 𝑆 ∈ CRing) | 
| 41 | 5, 6, 11 | pwselbasb 17534 | . . . . . . . 8
⊢ ((𝑆 ∈ CRing ∧ (𝐵 ↑m 𝐼) ∈ V) → ((𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)) ∈ (Base‘𝑇) ↔ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)):(𝐵 ↑m 𝐼)⟶𝐵)) | 
| 42 | 40, 16, 41 | sylancl 586 | . . . . . . 7
⊢ (((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥 ∈ 𝐼) → ((𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)) ∈ (Base‘𝑇) ↔ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)):(𝐵 ↑m 𝐼)⟶𝐵)) | 
| 43 | 39, 42 | mpbird 257 | . . . . . 6
⊢ (((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥 ∈ 𝐼) → (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)) ∈ (Base‘𝑇)) | 
| 44 | 43, 9 | fmptd 7133 | . . . . 5
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑌:𝐼⟶(Base‘𝑇)) | 
| 45 | 2, 11, 7, 3, 12, 14, 18, 31, 44 | evlseu 22108 | . . . 4
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ∃!𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚 ∘ 𝐴) = 𝑋 ∧ (𝑚 ∘ 𝑉) = 𝑌)) | 
| 46 |  | riotacl2 7405 | . . . 4
⊢
(∃!𝑚 ∈
(𝑊 RingHom 𝑇)((𝑚 ∘ 𝐴) = 𝑋 ∧ (𝑚 ∘ 𝑉) = 𝑌) → (℩𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚 ∘ 𝐴) = 𝑋 ∧ (𝑚 ∘ 𝑉) = 𝑌)) ∈ {𝑚 ∈ (𝑊 RingHom 𝑇) ∣ ((𝑚 ∘ 𝐴) = 𝑋 ∧ (𝑚 ∘ 𝑉) = 𝑌)}) | 
| 47 | 45, 46 | syl 17 | . . 3
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (℩𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚 ∘ 𝐴) = 𝑋 ∧ (𝑚 ∘ 𝑉) = 𝑌)) ∈ {𝑚 ∈ (𝑊 RingHom 𝑇) ∣ ((𝑚 ∘ 𝐴) = 𝑋 ∧ (𝑚 ∘ 𝑉) = 𝑌)}) | 
| 48 | 10, 47 | eqeltrd 2840 | . 2
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ {𝑚 ∈ (𝑊 RingHom 𝑇) ∣ ((𝑚 ∘ 𝐴) = 𝑋 ∧ (𝑚 ∘ 𝑉) = 𝑌)}) | 
| 49 |  | coeq1 5867 | . . . . 5
⊢ (𝑚 = 𝑄 → (𝑚 ∘ 𝐴) = (𝑄 ∘ 𝐴)) | 
| 50 | 49 | eqeq1d 2738 | . . . 4
⊢ (𝑚 = 𝑄 → ((𝑚 ∘ 𝐴) = 𝑋 ↔ (𝑄 ∘ 𝐴) = 𝑋)) | 
| 51 |  | coeq1 5867 | . . . . 5
⊢ (𝑚 = 𝑄 → (𝑚 ∘ 𝑉) = (𝑄 ∘ 𝑉)) | 
| 52 | 51 | eqeq1d 2738 | . . . 4
⊢ (𝑚 = 𝑄 → ((𝑚 ∘ 𝑉) = 𝑌 ↔ (𝑄 ∘ 𝑉) = 𝑌)) | 
| 53 | 50, 52 | anbi12d 632 | . . 3
⊢ (𝑚 = 𝑄 → (((𝑚 ∘ 𝐴) = 𝑋 ∧ (𝑚 ∘ 𝑉) = 𝑌) ↔ ((𝑄 ∘ 𝐴) = 𝑋 ∧ (𝑄 ∘ 𝑉) = 𝑌))) | 
| 54 | 53 | elrab 3691 | . 2
⊢ (𝑄 ∈ {𝑚 ∈ (𝑊 RingHom 𝑇) ∣ ((𝑚 ∘ 𝐴) = 𝑋 ∧ (𝑚 ∘ 𝑉) = 𝑌)} ↔ (𝑄 ∈ (𝑊 RingHom 𝑇) ∧ ((𝑄 ∘ 𝐴) = 𝑋 ∧ (𝑄 ∘ 𝑉) = 𝑌))) | 
| 55 | 48, 54 | sylib 218 | 1
⊢ ((𝐼 ∈ 𝑍 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ (𝑊 RingHom 𝑇) ∧ ((𝑄 ∘ 𝐴) = 𝑋 ∧ (𝑄 ∘ 𝑉) = 𝑌))) |