MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlsval2 Structured version   Visualization version   GIF version

Theorem evlsval2 22010
Description: Characterizing properties of the polynomial evaluation map function. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Revised by AV, 18-Sep-2021.)
Hypotheses
Ref Expression
evlsval.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsval.w 𝑊 = (𝐼 mPoly 𝑈)
evlsval.v 𝑉 = (𝐼 mVar 𝑈)
evlsval.u 𝑈 = (𝑆s 𝑅)
evlsval.t 𝑇 = (𝑆s (𝐵m 𝐼))
evlsval.b 𝐵 = (Base‘𝑆)
evlsval.a 𝐴 = (algSc‘𝑊)
evlsval.x 𝑋 = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥}))
evlsval.y 𝑌 = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)))
Assertion
Ref Expression
evlsval2 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ (𝑊 RingHom 𝑇) ∧ ((𝑄𝐴) = 𝑋 ∧ (𝑄𝑉) = 𝑌)))
Distinct variable groups:   𝑔,𝐼,𝑥   𝑥,𝑅   𝑆,𝑔,𝑥   𝐵,𝑔,𝑥   𝑅,𝑔   𝑥,𝑇   𝑔,𝑍,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑔)   𝑄(𝑥,𝑔)   𝑇(𝑔)   𝑈(𝑥,𝑔)   𝑉(𝑥,𝑔)   𝑊(𝑥,𝑔)   𝑋(𝑥,𝑔)   𝑌(𝑥,𝑔)

Proof of Theorem evlsval2
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 evlsval.q . . . 4 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
2 evlsval.w . . . 4 𝑊 = (𝐼 mPoly 𝑈)
3 evlsval.v . . . 4 𝑉 = (𝐼 mVar 𝑈)
4 evlsval.u . . . 4 𝑈 = (𝑆s 𝑅)
5 evlsval.t . . . 4 𝑇 = (𝑆s (𝐵m 𝐼))
6 evlsval.b . . . 4 𝐵 = (Base‘𝑆)
7 evlsval.a . . . 4 𝐴 = (algSc‘𝑊)
8 evlsval.x . . . 4 𝑋 = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥}))
9 evlsval.y . . . 4 𝑌 = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)))
101, 2, 3, 4, 5, 6, 7, 8, 9evlsval 22009 . . 3 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 = (𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)))
11 eqid 2729 . . . . 5 (Base‘𝑇) = (Base‘𝑇)
12 simp1 1136 . . . . 5 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝐼𝑍)
134subrgcrng 20478 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing)
14133adant1 1130 . . . . 5 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing)
15 simp2 1137 . . . . . 6 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑆 ∈ CRing)
16 ovex 7386 . . . . . 6 (𝐵m 𝐼) ∈ V
175pwscrng 20229 . . . . . 6 ((𝑆 ∈ CRing ∧ (𝐵m 𝐼) ∈ V) → 𝑇 ∈ CRing)
1815, 16, 17sylancl 586 . . . . 5 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑇 ∈ CRing)
196subrgss 20475 . . . . . . . . 9 (𝑅 ∈ (SubRing‘𝑆) → 𝑅𝐵)
20193ad2ant3 1135 . . . . . . . 8 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅𝐵)
2120resmptd 5995 . . . . . . 7 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥𝐵 ↦ ((𝐵m 𝐼) × {𝑥})) ↾ 𝑅) = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})))
2221, 8eqtr4di 2782 . . . . . 6 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥𝐵 ↦ ((𝐵m 𝐼) × {𝑥})) ↾ 𝑅) = 𝑋)
23 crngring 20148 . . . . . . . . 9 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
24233ad2ant2 1134 . . . . . . . 8 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑆 ∈ Ring)
25 eqid 2729 . . . . . . . . 9 (𝑥𝐵 ↦ ((𝐵m 𝐼) × {𝑥})) = (𝑥𝐵 ↦ ((𝐵m 𝐼) × {𝑥}))
265, 6, 25pwsdiagrhm 20510 . . . . . . . 8 ((𝑆 ∈ Ring ∧ (𝐵m 𝐼) ∈ V) → (𝑥𝐵 ↦ ((𝐵m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇))
2724, 16, 26sylancl 586 . . . . . . 7 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑥𝐵 ↦ ((𝐵m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇))
28 simp3 1138 . . . . . . 7 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑅 ∈ (SubRing‘𝑆))
294resrhm 20504 . . . . . . 7 (((𝑥𝐵 ↦ ((𝐵m 𝐼) × {𝑥})) ∈ (𝑆 RingHom 𝑇) ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥𝐵 ↦ ((𝐵m 𝐼) × {𝑥})) ↾ 𝑅) ∈ (𝑈 RingHom 𝑇))
3027, 28, 29syl2anc 584 . . . . . 6 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ((𝑥𝐵 ↦ ((𝐵m 𝐼) × {𝑥})) ↾ 𝑅) ∈ (𝑈 RingHom 𝑇))
3122, 30eqeltrrd 2829 . . . . 5 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑋 ∈ (𝑈 RingHom 𝑇))
326fvexi 6840 . . . . . . . . . . 11 𝐵 ∈ V
33 simpl1 1192 . . . . . . . . . . 11 (((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) → 𝐼𝑍)
34 elmapg 8773 . . . . . . . . . . 11 ((𝐵 ∈ V ∧ 𝐼𝑍) → (𝑔 ∈ (𝐵m 𝐼) ↔ 𝑔:𝐼𝐵))
3532, 33, 34sylancr 587 . . . . . . . . . 10 (((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) → (𝑔 ∈ (𝐵m 𝐼) ↔ 𝑔:𝐼𝐵))
3635biimpa 476 . . . . . . . . 9 ((((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) ∧ 𝑔 ∈ (𝐵m 𝐼)) → 𝑔:𝐼𝐵)
37 simplr 768 . . . . . . . . 9 ((((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) ∧ 𝑔 ∈ (𝐵m 𝐼)) → 𝑥𝐼)
3836, 37ffvelcdmd 7023 . . . . . . . 8 ((((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) ∧ 𝑔 ∈ (𝐵m 𝐼)) → (𝑔𝑥) ∈ 𝐵)
3938fmpttd 7053 . . . . . . 7 (((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) → (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)):(𝐵m 𝐼)⟶𝐵)
40 simpl2 1193 . . . . . . . 8 (((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) → 𝑆 ∈ CRing)
415, 6, 11pwselbasb 17410 . . . . . . . 8 ((𝑆 ∈ CRing ∧ (𝐵m 𝐼) ∈ V) → ((𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)) ∈ (Base‘𝑇) ↔ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)):(𝐵m 𝐼)⟶𝐵))
4240, 16, 41sylancl 586 . . . . . . 7 (((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) → ((𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)) ∈ (Base‘𝑇) ↔ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)):(𝐵m 𝐼)⟶𝐵))
4339, 42mpbird 257 . . . . . 6 (((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) ∧ 𝑥𝐼) → (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)) ∈ (Base‘𝑇))
4443, 9fmptd 7052 . . . . 5 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑌:𝐼⟶(Base‘𝑇))
452, 11, 7, 3, 12, 14, 18, 31, 44evlseu 22006 . . . 4 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → ∃!𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌))
46 riotacl2 7326 . . . 4 (∃!𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌) → (𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)) ∈ {𝑚 ∈ (𝑊 RingHom 𝑇) ∣ ((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)})
4745, 46syl 17 . . 3 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑚 ∈ (𝑊 RingHom 𝑇)((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)) ∈ {𝑚 ∈ (𝑊 RingHom 𝑇) ∣ ((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)})
4810, 47eqeltrd 2828 . 2 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ {𝑚 ∈ (𝑊 RingHom 𝑇) ∣ ((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)})
49 coeq1 5804 . . . . 5 (𝑚 = 𝑄 → (𝑚𝐴) = (𝑄𝐴))
5049eqeq1d 2731 . . . 4 (𝑚 = 𝑄 → ((𝑚𝐴) = 𝑋 ↔ (𝑄𝐴) = 𝑋))
51 coeq1 5804 . . . . 5 (𝑚 = 𝑄 → (𝑚𝑉) = (𝑄𝑉))
5251eqeq1d 2731 . . . 4 (𝑚 = 𝑄 → ((𝑚𝑉) = 𝑌 ↔ (𝑄𝑉) = 𝑌))
5350, 52anbi12d 632 . . 3 (𝑚 = 𝑄 → (((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌) ↔ ((𝑄𝐴) = 𝑋 ∧ (𝑄𝑉) = 𝑌)))
5453elrab 3650 . 2 (𝑄 ∈ {𝑚 ∈ (𝑊 RingHom 𝑇) ∣ ((𝑚𝐴) = 𝑋 ∧ (𝑚𝑉) = 𝑌)} ↔ (𝑄 ∈ (𝑊 RingHom 𝑇) ∧ ((𝑄𝐴) = 𝑋 ∧ (𝑄𝑉) = 𝑌)))
5548, 54sylib 218 1 ((𝐼𝑍𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ (𝑊 RingHom 𝑇) ∧ ((𝑄𝐴) = 𝑋 ∧ (𝑄𝑉) = 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  ∃!wreu 3343  {crab 3396  Vcvv 3438  wss 3905  {csn 4579  cmpt 5176   × cxp 5621  cres 5625  ccom 5627  wf 6482  cfv 6486  crio 7309  (class class class)co 7353  m cmap 8760  Basecbs 17138  s cress 17159  s cpws 17368  Ringcrg 20136  CRingccrg 20137   RingHom crh 20372  SubRingcsubrg 20472  algSccascl 21777   mVar cmvr 21830   mPoly cmpl 21831   evalSub ces 21995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-ofr 7618  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-sup 9351  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-hom 17203  df-cco 17204  df-0g 17363  df-gsum 17364  df-prds 17369  df-pws 17371  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-mhm 18675  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-ghm 19110  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-rng 20056  df-ur 20085  df-srg 20090  df-ring 20138  df-cring 20139  df-rhm 20375  df-subrng 20449  df-subrg 20473  df-lmod 20783  df-lss 20853  df-lsp 20893  df-assa 21778  df-asp 21779  df-ascl 21780  df-psr 21834  df-mvr 21835  df-mpl 21836  df-evls 21997
This theorem is referenced by:  evlsrhm  22011  evlssca  22012  evlsvar  22013
  Copyright terms: Public domain W3C validator