![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmsiota | Structured version Visualization version GIF version |
Description: Identify the unique element of 𝑇 containing 𝐴. (Contributed by Mario Carneiro, 14-Feb-2015.) |
Ref | Expression |
---|---|
cvmcov.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmseu.1 | ⊢ 𝐵 = ∪ 𝐶 |
cvmsiota.2 | ⊢ 𝑊 = (℩𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) |
Ref | Expression |
---|---|
cvmsiota | ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → (𝑊 ∈ 𝑇 ∧ 𝐴 ∈ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmsiota.2 | . . 3 ⊢ 𝑊 = (℩𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) | |
2 | cvmcov.1 | . . . . 5 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
3 | cvmseu.1 | . . . . 5 ⊢ 𝐵 = ∪ 𝐶 | |
4 | 2, 3 | cvmseu 35261 | . . . 4 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → ∃!𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) |
5 | riotacl2 7404 | . . . 4 ⊢ (∃!𝑥 ∈ 𝑇 𝐴 ∈ 𝑥 → (℩𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) ∈ {𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥}) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → (℩𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) ∈ {𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥}) |
7 | 1, 6 | eqeltrid 2843 | . 2 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → 𝑊 ∈ {𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥}) |
8 | eleq2 2828 | . . 3 ⊢ (𝑣 = 𝑊 → (𝐴 ∈ 𝑣 ↔ 𝐴 ∈ 𝑊)) | |
9 | eleq2 2828 | . . . 4 ⊢ (𝑥 = 𝑣 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑣)) | |
10 | 9 | cbvrabv 3444 | . . 3 ⊢ {𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥} = {𝑣 ∈ 𝑇 ∣ 𝐴 ∈ 𝑣} |
11 | 8, 10 | elrab2 3698 | . 2 ⊢ (𝑊 ∈ {𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥} ↔ (𝑊 ∈ 𝑇 ∧ 𝐴 ∈ 𝑊)) |
12 | 7, 11 | sylib 218 | 1 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → (𝑊 ∈ 𝑇 ∧ 𝐴 ∈ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃!wreu 3376 {crab 3433 ∖ cdif 3960 ∩ cin 3962 ∅c0 4339 𝒫 cpw 4605 {csn 4631 ∪ cuni 4912 ↦ cmpt 5231 ◡ccnv 5688 ↾ cres 5691 “ cima 5692 ‘cfv 6563 ℩crio 7387 (class class class)co 7431 ↾t crest 17467 Homeochmeo 23777 CovMap ccvm 35240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-map 8867 df-top 22916 df-topon 22933 df-cn 23251 df-cvm 35241 |
This theorem is referenced by: cvmopnlem 35263 cvmliftmolem2 35267 cvmliftlem6 35275 cvmliftlem8 35277 cvmliftlem9 35278 cvmlift2lem9 35296 cvmlift3lem6 35309 cvmlift3lem7 35310 |
Copyright terms: Public domain | W3C validator |