Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmsiota Structured version   Visualization version   GIF version

Theorem cvmsiota 35252
Description: Identify the unique element of 𝑇 containing 𝐴. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmseu.1 𝐵 = 𝐶
cvmsiota.2 𝑊 = (𝑥𝑇 𝐴𝑥)
Assertion
Ref Expression
cvmsiota ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → (𝑊𝑇𝐴𝑊))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝑥,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣,𝑥   𝑘,𝐽,𝑠,𝑢,𝑣,𝑥   𝑥,𝑆   𝑈,𝑘,𝑠,𝑢,𝑣,𝑥   𝑇,𝑠,𝑢,𝑣,𝑥   𝑣,𝑊   𝑢,𝐴,𝑣,𝑥   𝑣,𝐵,𝑥
Allowed substitution hints:   𝐴(𝑘,𝑠)   𝐵(𝑢,𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑇(𝑘)   𝑊(𝑥,𝑢,𝑘,𝑠)

Proof of Theorem cvmsiota
StepHypRef Expression
1 cvmsiota.2 . . 3 𝑊 = (𝑥𝑇 𝐴𝑥)
2 cvmcov.1 . . . . 5 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
3 cvmseu.1 . . . . 5 𝐵 = 𝐶
42, 3cvmseu 35251 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → ∃!𝑥𝑇 𝐴𝑥)
5 riotacl2 7326 . . . 4 (∃!𝑥𝑇 𝐴𝑥 → (𝑥𝑇 𝐴𝑥) ∈ {𝑥𝑇𝐴𝑥})
64, 5syl 17 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → (𝑥𝑇 𝐴𝑥) ∈ {𝑥𝑇𝐴𝑥})
71, 6eqeltrid 2832 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝑊 ∈ {𝑥𝑇𝐴𝑥})
8 eleq2 2817 . . 3 (𝑣 = 𝑊 → (𝐴𝑣𝐴𝑊))
9 eleq2 2817 . . . 4 (𝑥 = 𝑣 → (𝐴𝑥𝐴𝑣))
109cbvrabv 3407 . . 3 {𝑥𝑇𝐴𝑥} = {𝑣𝑇𝐴𝑣}
118, 10elrab2 3653 . 2 (𝑊 ∈ {𝑥𝑇𝐴𝑥} ↔ (𝑊𝑇𝐴𝑊))
127, 11sylib 218 1 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → (𝑊𝑇𝐴𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  ∃!wreu 3343  {crab 3396  cdif 3902  cin 3904  c0 4286  𝒫 cpw 4553  {csn 4579   cuni 4861  cmpt 5176  ccnv 5622  cres 5625  cima 5626  cfv 6486  crio 7309  (class class class)co 7353  t crest 17342  Homeochmeo 23656   CovMap ccvm 35230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-map 8762  df-top 22797  df-topon 22814  df-cn 23130  df-cvm 35231
This theorem is referenced by:  cvmopnlem  35253  cvmliftmolem2  35257  cvmliftlem6  35265  cvmliftlem8  35267  cvmliftlem9  35268  cvmlift2lem9  35286  cvmlift3lem6  35299  cvmlift3lem7  35300
  Copyright terms: Public domain W3C validator