![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmsiota | Structured version Visualization version GIF version |
Description: Identify the unique element of 𝑇 containing 𝐴. (Contributed by Mario Carneiro, 14-Feb-2015.) |
Ref | Expression |
---|---|
cvmcov.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmseu.1 | ⊢ 𝐵 = ∪ 𝐶 |
cvmsiota.2 | ⊢ 𝑊 = (℩𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) |
Ref | Expression |
---|---|
cvmsiota | ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → (𝑊 ∈ 𝑇 ∧ 𝐴 ∈ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmsiota.2 | . . 3 ⊢ 𝑊 = (℩𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) | |
2 | cvmcov.1 | . . . . 5 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
3 | cvmseu.1 | . . . . 5 ⊢ 𝐵 = ∪ 𝐶 | |
4 | 2, 3 | cvmseu 35244 | . . . 4 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → ∃!𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) |
5 | riotacl2 7421 | . . . 4 ⊢ (∃!𝑥 ∈ 𝑇 𝐴 ∈ 𝑥 → (℩𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) ∈ {𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥}) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → (℩𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) ∈ {𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥}) |
7 | 1, 6 | eqeltrid 2848 | . 2 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → 𝑊 ∈ {𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥}) |
8 | eleq2 2833 | . . 3 ⊢ (𝑣 = 𝑊 → (𝐴 ∈ 𝑣 ↔ 𝐴 ∈ 𝑊)) | |
9 | eleq2 2833 | . . . 4 ⊢ (𝑥 = 𝑣 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑣)) | |
10 | 9 | cbvrabv 3454 | . . 3 ⊢ {𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥} = {𝑣 ∈ 𝑇 ∣ 𝐴 ∈ 𝑣} |
11 | 8, 10 | elrab2 3711 | . 2 ⊢ (𝑊 ∈ {𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥} ↔ (𝑊 ∈ 𝑇 ∧ 𝐴 ∈ 𝑊)) |
12 | 7, 11 | sylib 218 | 1 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → (𝑊 ∈ 𝑇 ∧ 𝐴 ∈ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∃!wreu 3386 {crab 3443 ∖ cdif 3973 ∩ cin 3975 ∅c0 4352 𝒫 cpw 4622 {csn 4648 ∪ cuni 4931 ↦ cmpt 5249 ◡ccnv 5699 ↾ cres 5702 “ cima 5703 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 ↾t crest 17480 Homeochmeo 23782 CovMap ccvm 35223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-map 8886 df-top 22921 df-topon 22938 df-cn 23256 df-cvm 35224 |
This theorem is referenced by: cvmopnlem 35246 cvmliftmolem2 35250 cvmliftlem6 35258 cvmliftlem8 35260 cvmliftlem9 35261 cvmlift2lem9 35279 cvmlift3lem6 35292 cvmlift3lem7 35293 |
Copyright terms: Public domain | W3C validator |