![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmsiota | Structured version Visualization version GIF version |
Description: Identify the unique element of 𝑇 containing 𝐴. (Contributed by Mario Carneiro, 14-Feb-2015.) |
Ref | Expression |
---|---|
cvmcov.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
cvmseu.1 | ⊢ 𝐵 = ∪ 𝐶 |
cvmsiota.2 | ⊢ 𝑊 = (℩𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) |
Ref | Expression |
---|---|
cvmsiota | ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → (𝑊 ∈ 𝑇 ∧ 𝐴 ∈ 𝑊)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvmsiota.2 | . . 3 ⊢ 𝑊 = (℩𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) | |
2 | cvmcov.1 | . . . . 5 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
3 | cvmseu.1 | . . . . 5 ⊢ 𝐵 = ∪ 𝐶 | |
4 | 2, 3 | cvmseu 34891 | . . . 4 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → ∃!𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) |
5 | riotacl2 7397 | . . . 4 ⊢ (∃!𝑥 ∈ 𝑇 𝐴 ∈ 𝑥 → (℩𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) ∈ {𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥}) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → (℩𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) ∈ {𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥}) |
7 | 1, 6 | eqeltrid 2832 | . 2 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → 𝑊 ∈ {𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥}) |
8 | eleq2 2817 | . . 3 ⊢ (𝑣 = 𝑊 → (𝐴 ∈ 𝑣 ↔ 𝐴 ∈ 𝑊)) | |
9 | eleq2 2817 | . . . 4 ⊢ (𝑥 = 𝑣 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑣)) | |
10 | 9 | cbvrabv 3439 | . . 3 ⊢ {𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥} = {𝑣 ∈ 𝑇 ∣ 𝐴 ∈ 𝑣} |
11 | 8, 10 | elrab2 3685 | . 2 ⊢ (𝑊 ∈ {𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥} ↔ (𝑊 ∈ 𝑇 ∧ 𝐴 ∈ 𝑊)) |
12 | 7, 11 | sylib 217 | 1 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → (𝑊 ∈ 𝑇 ∧ 𝐴 ∈ 𝑊)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3057 ∃!wreu 3370 {crab 3428 ∖ cdif 3944 ∩ cin 3946 ∅c0 4324 𝒫 cpw 4604 {csn 4630 ∪ cuni 4910 ↦ cmpt 5233 ◡ccnv 5679 ↾ cres 5682 “ cima 5683 ‘cfv 6551 ℩crio 7379 (class class class)co 7424 ↾t crest 17407 Homeochmeo 23675 CovMap ccvm 34870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2698 ax-sep 5301 ax-nul 5308 ax-pow 5367 ax-pr 5431 ax-un 7744 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4325 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4911 df-br 5151 df-opab 5213 df-mpt 5234 df-id 5578 df-xp 5686 df-rel 5687 df-cnv 5688 df-co 5689 df-dm 5690 df-rn 5691 df-res 5692 df-ima 5693 df-iota 6503 df-fun 6553 df-fn 6554 df-f 6555 df-fv 6559 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-map 8851 df-top 22814 df-topon 22831 df-cn 23149 df-cvm 34871 |
This theorem is referenced by: cvmopnlem 34893 cvmliftmolem2 34897 cvmliftlem6 34905 cvmliftlem8 34907 cvmliftlem9 34908 cvmlift2lem9 34926 cvmlift3lem6 34939 cvmlift3lem7 34940 |
Copyright terms: Public domain | W3C validator |