Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmsiota Structured version   Visualization version   GIF version

Theorem cvmsiota 35282
Description: Identify the unique element of 𝑇 containing 𝐴. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmseu.1 𝐵 = 𝐶
cvmsiota.2 𝑊 = (𝑥𝑇 𝐴𝑥)
Assertion
Ref Expression
cvmsiota ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → (𝑊𝑇𝐴𝑊))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝑥,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣,𝑥   𝑘,𝐽,𝑠,𝑢,𝑣,𝑥   𝑥,𝑆   𝑈,𝑘,𝑠,𝑢,𝑣,𝑥   𝑇,𝑠,𝑢,𝑣,𝑥   𝑣,𝑊   𝑢,𝐴,𝑣,𝑥   𝑣,𝐵,𝑥
Allowed substitution hints:   𝐴(𝑘,𝑠)   𝐵(𝑢,𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑇(𝑘)   𝑊(𝑥,𝑢,𝑘,𝑠)

Proof of Theorem cvmsiota
StepHypRef Expression
1 cvmsiota.2 . . 3 𝑊 = (𝑥𝑇 𝐴𝑥)
2 cvmcov.1 . . . . 5 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
3 cvmseu.1 . . . . 5 𝐵 = 𝐶
42, 3cvmseu 35281 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → ∃!𝑥𝑇 𝐴𝑥)
5 riotacl2 7404 . . . 4 (∃!𝑥𝑇 𝐴𝑥 → (𝑥𝑇 𝐴𝑥) ∈ {𝑥𝑇𝐴𝑥})
64, 5syl 17 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → (𝑥𝑇 𝐴𝑥) ∈ {𝑥𝑇𝐴𝑥})
71, 6eqeltrid 2845 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝑊 ∈ {𝑥𝑇𝐴𝑥})
8 eleq2 2830 . . 3 (𝑣 = 𝑊 → (𝐴𝑣𝐴𝑊))
9 eleq2 2830 . . . 4 (𝑥 = 𝑣 → (𝐴𝑥𝐴𝑣))
109cbvrabv 3447 . . 3 {𝑥𝑇𝐴𝑥} = {𝑣𝑇𝐴𝑣}
118, 10elrab2 3695 . 2 (𝑊 ∈ {𝑥𝑇𝐴𝑥} ↔ (𝑊𝑇𝐴𝑊))
127, 11sylib 218 1 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → (𝑊𝑇𝐴𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  ∃!wreu 3378  {crab 3436  cdif 3948  cin 3950  c0 4333  𝒫 cpw 4600  {csn 4626   cuni 4907  cmpt 5225  ccnv 5684  cres 5687  cima 5688  cfv 6561  crio 7387  (class class class)co 7431  t crest 17465  Homeochmeo 23761   CovMap ccvm 35260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-map 8868  df-top 22900  df-topon 22917  df-cn 23235  df-cvm 35261
This theorem is referenced by:  cvmopnlem  35283  cvmliftmolem2  35287  cvmliftlem6  35295  cvmliftlem8  35297  cvmliftlem9  35298  cvmlift2lem9  35316  cvmlift3lem6  35329  cvmlift3lem7  35330
  Copyright terms: Public domain W3C validator