Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvmsiota Structured version   Visualization version   GIF version

Theorem cvmsiota 33239
Description: Identify the unique element of 𝑇 containing 𝐴. (Contributed by Mario Carneiro, 14-Feb-2015.)
Hypotheses
Ref Expression
cvmcov.1 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
cvmseu.1 𝐵 = 𝐶
cvmsiota.2 𝑊 = (𝑥𝑇 𝐴𝑥)
Assertion
Ref Expression
cvmsiota ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → (𝑊𝑇𝐴𝑊))
Distinct variable groups:   𝑘,𝑠,𝑢,𝑣,𝑥,𝐶   𝑘,𝐹,𝑠,𝑢,𝑣,𝑥   𝑘,𝐽,𝑠,𝑢,𝑣,𝑥   𝑥,𝑆   𝑈,𝑘,𝑠,𝑢,𝑣,𝑥   𝑇,𝑠,𝑢,𝑣,𝑥   𝑣,𝑊   𝑢,𝐴,𝑣,𝑥   𝑣,𝐵,𝑥
Allowed substitution hints:   𝐴(𝑘,𝑠)   𝐵(𝑢,𝑘,𝑠)   𝑆(𝑣,𝑢,𝑘,𝑠)   𝑇(𝑘)   𝑊(𝑥,𝑢,𝑘,𝑠)

Proof of Theorem cvmsiota
StepHypRef Expression
1 cvmsiota.2 . . 3 𝑊 = (𝑥𝑇 𝐴𝑥)
2 cvmcov.1 . . . . 5 𝑆 = (𝑘𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ ( 𝑠 = (𝐹𝑘) ∧ ∀𝑢𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢𝑣) = ∅ ∧ (𝐹𝑢) ∈ ((𝐶t 𝑢)Homeo(𝐽t 𝑘))))})
3 cvmseu.1 . . . . 5 𝐵 = 𝐶
42, 3cvmseu 33238 . . . 4 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → ∃!𝑥𝑇 𝐴𝑥)
5 riotacl2 7249 . . . 4 (∃!𝑥𝑇 𝐴𝑥 → (𝑥𝑇 𝐴𝑥) ∈ {𝑥𝑇𝐴𝑥})
64, 5syl 17 . . 3 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → (𝑥𝑇 𝐴𝑥) ∈ {𝑥𝑇𝐴𝑥})
71, 6eqeltrid 2843 . 2 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → 𝑊 ∈ {𝑥𝑇𝐴𝑥})
8 eleq2 2827 . . 3 (𝑣 = 𝑊 → (𝐴𝑣𝐴𝑊))
9 eleq2 2827 . . . 4 (𝑥 = 𝑣 → (𝐴𝑥𝐴𝑣))
109cbvrabv 3426 . . 3 {𝑥𝑇𝐴𝑥} = {𝑣𝑇𝐴𝑣}
118, 10elrab2 3627 . 2 (𝑊 ∈ {𝑥𝑇𝐴𝑥} ↔ (𝑊𝑇𝐴𝑊))
127, 11sylib 217 1 ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆𝑈) ∧ 𝐴𝐵 ∧ (𝐹𝐴) ∈ 𝑈)) → (𝑊𝑇𝐴𝑊))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  ∃!wreu 3066  {crab 3068  cdif 3884  cin 3886  c0 4256  𝒫 cpw 4533  {csn 4561   cuni 4839  cmpt 5157  ccnv 5588  cres 5591  cima 5592  cfv 6433  crio 7231  (class class class)co 7275  t crest 17131  Homeochmeo 22904   CovMap ccvm 33217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-map 8617  df-top 22043  df-topon 22060  df-cn 22378  df-cvm 33218
This theorem is referenced by:  cvmopnlem  33240  cvmliftmolem2  33244  cvmliftlem6  33252  cvmliftlem8  33254  cvmliftlem9  33255  cvmlift2lem9  33273  cvmlift3lem6  33286  cvmlift3lem7  33287
  Copyright terms: Public domain W3C validator