| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cvmsiota | Structured version Visualization version GIF version | ||
| Description: Identify the unique element of 𝑇 containing 𝐴. (Contributed by Mario Carneiro, 14-Feb-2015.) |
| Ref | Expression |
|---|---|
| cvmcov.1 | ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) |
| cvmseu.1 | ⊢ 𝐵 = ∪ 𝐶 |
| cvmsiota.2 | ⊢ 𝑊 = (℩𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) |
| Ref | Expression |
|---|---|
| cvmsiota | ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → (𝑊 ∈ 𝑇 ∧ 𝐴 ∈ 𝑊)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cvmsiota.2 | . . 3 ⊢ 𝑊 = (℩𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) | |
| 2 | cvmcov.1 | . . . . 5 ⊢ 𝑆 = (𝑘 ∈ 𝐽 ↦ {𝑠 ∈ (𝒫 𝐶 ∖ {∅}) ∣ (∪ 𝑠 = (◡𝐹 “ 𝑘) ∧ ∀𝑢 ∈ 𝑠 (∀𝑣 ∈ (𝑠 ∖ {𝑢})(𝑢 ∩ 𝑣) = ∅ ∧ (𝐹 ↾ 𝑢) ∈ ((𝐶 ↾t 𝑢)Homeo(𝐽 ↾t 𝑘))))}) | |
| 3 | cvmseu.1 | . . . . 5 ⊢ 𝐵 = ∪ 𝐶 | |
| 4 | 2, 3 | cvmseu 35251 | . . . 4 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → ∃!𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) |
| 5 | riotacl2 7326 | . . . 4 ⊢ (∃!𝑥 ∈ 𝑇 𝐴 ∈ 𝑥 → (℩𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) ∈ {𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥}) | |
| 6 | 4, 5 | syl 17 | . . 3 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → (℩𝑥 ∈ 𝑇 𝐴 ∈ 𝑥) ∈ {𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥}) |
| 7 | 1, 6 | eqeltrid 2832 | . 2 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → 𝑊 ∈ {𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥}) |
| 8 | eleq2 2817 | . . 3 ⊢ (𝑣 = 𝑊 → (𝐴 ∈ 𝑣 ↔ 𝐴 ∈ 𝑊)) | |
| 9 | eleq2 2817 | . . . 4 ⊢ (𝑥 = 𝑣 → (𝐴 ∈ 𝑥 ↔ 𝐴 ∈ 𝑣)) | |
| 10 | 9 | cbvrabv 3407 | . . 3 ⊢ {𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥} = {𝑣 ∈ 𝑇 ∣ 𝐴 ∈ 𝑣} |
| 11 | 8, 10 | elrab2 3653 | . 2 ⊢ (𝑊 ∈ {𝑥 ∈ 𝑇 ∣ 𝐴 ∈ 𝑥} ↔ (𝑊 ∈ 𝑇 ∧ 𝐴 ∈ 𝑊)) |
| 12 | 7, 11 | sylib 218 | 1 ⊢ ((𝐹 ∈ (𝐶 CovMap 𝐽) ∧ (𝑇 ∈ (𝑆‘𝑈) ∧ 𝐴 ∈ 𝐵 ∧ (𝐹‘𝐴) ∈ 𝑈)) → (𝑊 ∈ 𝑇 ∧ 𝐴 ∈ 𝑊)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃!wreu 3343 {crab 3396 ∖ cdif 3902 ∩ cin 3904 ∅c0 4286 𝒫 cpw 4553 {csn 4579 ∪ cuni 4861 ↦ cmpt 5176 ◡ccnv 5622 ↾ cres 5625 “ cima 5626 ‘cfv 6486 ℩crio 7309 (class class class)co 7353 ↾t crest 17342 Homeochmeo 23656 CovMap ccvm 35230 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-map 8762 df-top 22797 df-topon 22814 df-cn 23130 df-cvm 35231 |
| This theorem is referenced by: cvmopnlem 35253 cvmliftmolem2 35257 cvmliftlem6 35265 cvmliftlem8 35267 cvmliftlem9 35268 cvmlift2lem9 35286 cvmlift3lem6 35299 cvmlift3lem7 35300 |
| Copyright terms: Public domain | W3C validator |