Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coelem | Structured version Visualization version GIF version |
Description: Lemma for properties of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
coelem | ⊢ (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹) ∈ (ℂ ↑m ℕ0) ∧ ∃𝑛 ∈ ℕ0 (((coeff‘𝐹) “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeval 24972 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹) = (℩𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) | |
2 | coeeu 24974 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃!𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | |
3 | riotacl2 7144 | . . . 4 ⊢ (∃!𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) → (℩𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) ∈ {𝑎 ∈ (ℂ ↑m ℕ0) ∣ ∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))}) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → (℩𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) ∈ {𝑎 ∈ (ℂ ↑m ℕ0) ∣ ∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))}) |
5 | 1, 4 | eqeltrd 2833 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹) ∈ {𝑎 ∈ (ℂ ↑m ℕ0) ∣ ∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))}) |
6 | imaeq1 5898 | . . . . . 6 ⊢ (𝑎 = (coeff‘𝐹) → (𝑎 “ (ℤ≥‘(𝑛 + 1))) = ((coeff‘𝐹) “ (ℤ≥‘(𝑛 + 1)))) | |
7 | 6 | eqeq1d 2740 | . . . . 5 ⊢ (𝑎 = (coeff‘𝐹) → ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ↔ ((coeff‘𝐹) “ (ℤ≥‘(𝑛 + 1))) = {0})) |
8 | fveq1 6673 | . . . . . . . . 9 ⊢ (𝑎 = (coeff‘𝐹) → (𝑎‘𝑘) = ((coeff‘𝐹)‘𝑘)) | |
9 | 8 | oveq1d 7185 | . . . . . . . 8 ⊢ (𝑎 = (coeff‘𝐹) → ((𝑎‘𝑘) · (𝑧↑𝑘)) = (((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘))) |
10 | 9 | sumeq2sdv 15154 | . . . . . . 7 ⊢ (𝑎 = (coeff‘𝐹) → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘))) |
11 | 10 | mpteq2dv 5126 | . . . . . 6 ⊢ (𝑎 = (coeff‘𝐹) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘)))) |
12 | 11 | eqeq2d 2749 | . . . . 5 ⊢ (𝑎 = (coeff‘𝐹) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘))))) |
13 | 7, 12 | anbi12d 634 | . . . 4 ⊢ (𝑎 = (coeff‘𝐹) → (((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ (((coeff‘𝐹) “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘)))))) |
14 | 13 | rexbidv 3207 | . . 3 ⊢ (𝑎 = (coeff‘𝐹) → (∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ ∃𝑛 ∈ ℕ0 (((coeff‘𝐹) “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘)))))) |
15 | 14 | elrab 3588 | . 2 ⊢ ((coeff‘𝐹) ∈ {𝑎 ∈ (ℂ ↑m ℕ0) ∣ ∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))} ↔ ((coeff‘𝐹) ∈ (ℂ ↑m ℕ0) ∧ ∃𝑛 ∈ ℕ0 (((coeff‘𝐹) “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘)))))) |
16 | 5, 15 | sylib 221 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹) ∈ (ℂ ↑m ℕ0) ∧ ∃𝑛 ∈ ℕ0 (((coeff‘𝐹) “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ∃wrex 3054 ∃!wreu 3055 {crab 3057 {csn 4516 ↦ cmpt 5110 “ cima 5528 ‘cfv 6339 ℩crio 7126 (class class class)co 7170 ↑m cmap 8437 ℂcc 10613 0cc0 10615 1c1 10616 + caddc 10618 · cmul 10620 ℕ0cn0 11976 ℤ≥cuz 12324 ...cfz 12981 ↑cexp 13521 Σcsu 15135 Polycply 24933 coeffccoe 24935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-inf2 9177 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 ax-pre-sup 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-int 4837 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-of 7425 df-om 7600 df-1st 7714 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-map 8439 df-pm 8440 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-sup 8979 df-inf 8980 df-oi 9047 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-div 11376 df-nn 11717 df-2 11779 df-3 11780 df-n0 11977 df-z 12063 df-uz 12325 df-rp 12473 df-fz 12982 df-fzo 13125 df-fl 13253 df-seq 13461 df-exp 13522 df-hash 13783 df-cj 14548 df-re 14549 df-im 14550 df-sqrt 14684 df-abs 14685 df-clim 14935 df-rlim 14936 df-sum 15136 df-0p 24422 df-ply 24937 df-coe 24939 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |