Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > coelem | Structured version Visualization version GIF version |
Description: Lemma for properties of the coefficient function. (Contributed by Mario Carneiro, 22-Jul-2014.) (Revised by Mario Carneiro, 23-Aug-2014.) |
Ref | Expression |
---|---|
coelem | ⊢ (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹) ∈ (ℂ ↑m ℕ0) ∧ ∃𝑛 ∈ ℕ0 (((coeff‘𝐹) “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coeval 25384 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹) = (℩𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))))) | |
2 | coeeu 25386 | . . . 4 ⊢ (𝐹 ∈ (Poly‘𝑆) → ∃!𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) | |
3 | riotacl2 7249 | . . . 4 ⊢ (∃!𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) → (℩𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) ∈ {𝑎 ∈ (ℂ ↑m ℕ0) ∣ ∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))}) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (𝐹 ∈ (Poly‘𝑆) → (℩𝑎 ∈ (ℂ ↑m ℕ0)∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))) ∈ {𝑎 ∈ (ℂ ↑m ℕ0) ∣ ∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))}) |
5 | 1, 4 | eqeltrd 2839 | . 2 ⊢ (𝐹 ∈ (Poly‘𝑆) → (coeff‘𝐹) ∈ {𝑎 ∈ (ℂ ↑m ℕ0) ∣ ∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))}) |
6 | imaeq1 5964 | . . . . . 6 ⊢ (𝑎 = (coeff‘𝐹) → (𝑎 “ (ℤ≥‘(𝑛 + 1))) = ((coeff‘𝐹) “ (ℤ≥‘(𝑛 + 1)))) | |
7 | 6 | eqeq1d 2740 | . . . . 5 ⊢ (𝑎 = (coeff‘𝐹) → ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ↔ ((coeff‘𝐹) “ (ℤ≥‘(𝑛 + 1))) = {0})) |
8 | fveq1 6773 | . . . . . . . . 9 ⊢ (𝑎 = (coeff‘𝐹) → (𝑎‘𝑘) = ((coeff‘𝐹)‘𝑘)) | |
9 | 8 | oveq1d 7290 | . . . . . . . 8 ⊢ (𝑎 = (coeff‘𝐹) → ((𝑎‘𝑘) · (𝑧↑𝑘)) = (((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘))) |
10 | 9 | sumeq2sdv 15416 | . . . . . . 7 ⊢ (𝑎 = (coeff‘𝐹) → Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘))) |
11 | 10 | mpteq2dv 5176 | . . . . . 6 ⊢ (𝑎 = (coeff‘𝐹) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘)))) |
12 | 11 | eqeq2d 2749 | . . . . 5 ⊢ (𝑎 = (coeff‘𝐹) → (𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))) ↔ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘))))) |
13 | 7, 12 | anbi12d 631 | . . . 4 ⊢ (𝑎 = (coeff‘𝐹) → (((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ (((coeff‘𝐹) “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘)))))) |
14 | 13 | rexbidv 3226 | . . 3 ⊢ (𝑎 = (coeff‘𝐹) → (∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘)))) ↔ ∃𝑛 ∈ ℕ0 (((coeff‘𝐹) “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘)))))) |
15 | 14 | elrab 3624 | . 2 ⊢ ((coeff‘𝐹) ∈ {𝑎 ∈ (ℂ ↑m ℕ0) ∣ ∃𝑛 ∈ ℕ0 ((𝑎 “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)((𝑎‘𝑘) · (𝑧↑𝑘))))} ↔ ((coeff‘𝐹) ∈ (ℂ ↑m ℕ0) ∧ ∃𝑛 ∈ ℕ0 (((coeff‘𝐹) “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘)))))) |
16 | 5, 15 | sylib 217 | 1 ⊢ (𝐹 ∈ (Poly‘𝑆) → ((coeff‘𝐹) ∈ (ℂ ↑m ℕ0) ∧ ∃𝑛 ∈ ℕ0 (((coeff‘𝐹) “ (ℤ≥‘(𝑛 + 1))) = {0} ∧ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...𝑛)(((coeff‘𝐹)‘𝑘) · (𝑧↑𝑘)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 ∃!wreu 3066 {crab 3068 {csn 4561 ↦ cmpt 5157 “ cima 5592 ‘cfv 6433 ℩crio 7231 (class class class)co 7275 ↑m cmap 8615 ℂcc 10869 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 ℕ0cn0 12233 ℤ≥cuz 12582 ...cfz 13239 ↑cexp 13782 Σcsu 15397 Polycply 25345 coeffccoe 25347 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-inf2 9399 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-pm 8618 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-rp 12731 df-fz 13240 df-fzo 13383 df-fl 13512 df-seq 13722 df-exp 13783 df-hash 14045 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-clim 15197 df-rlim 15198 df-sum 15398 df-0p 24834 df-ply 25349 df-coe 25351 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |