Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmspecsqrtnq Structured version   Visualization version   GIF version

Theorem rmspecsqrtnq 39496
Description: The discriminant used to define the X and Y sequences has an irrational square root. (Contributed by Stefan O'Rear, 21-Sep-2014.) (Proof shortened by AV, 2-Aug-2021.)
Assertion
Ref Expression
rmspecsqrtnq (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))

Proof of Theorem rmspecsqrtnq
StepHypRef Expression
1 eluzelcn 12249 . . . . 5 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
21sqcld 13502 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℂ)
3 ax-1cn 10589 . . . 4 1 ∈ ℂ
4 subcl 10879 . . . 4 (((𝐴↑2) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴↑2) − 1) ∈ ℂ)
52, 3, 4sylancl 588 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
65sqrtcld 14791 . 2 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
7 eluz2nn 12278 . . . . 5 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
87nnsqcld 13599 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℕ)
9 nnm1nn0 11932 . . . 4 ((𝐴↑2) ∈ ℕ → ((𝐴↑2) − 1) ∈ ℕ0)
108, 9syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ0)
11 nnm1nn0 11932 . . . 4 (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0)
127, 11syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∈ ℕ0)
13 binom2sub1 13576 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1))
141, 13syl 17 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1))
15 2cnd 11709 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℂ)
1615, 1mulcld 10655 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℂ)
173a1i 11 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℂ)
182, 16, 17subsubd 11019 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − ((2 · 𝐴) − 1)) = (((𝐴↑2) − (2 · 𝐴)) + 1))
1914, 18eqtr4d 2859 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1)↑2) = ((𝐴↑2) − ((2 · 𝐴) − 1)))
20 1red 10636 . . . . 5 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℝ)
21 2re 11705 . . . . . . . 8 2 ∈ ℝ
2221a1i 11 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℝ)
23 eluzelre 12248 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
2422, 23remulcld 10665 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℝ)
2524, 20resubcld 11062 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((2 · 𝐴) − 1) ∈ ℝ)
268nnred 11647 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℝ)
27 eluz2gt1 12314 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
2820, 20, 23, 27, 27lt2addmuld 11881 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (1 + 1) < (2 · 𝐴))
29 remulcl 10616 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
3021, 23, 29sylancr 589 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℝ)
3120, 20, 30ltaddsubd 11234 . . . . . 6 (𝐴 ∈ (ℤ‘2) → ((1 + 1) < (2 · 𝐴) ↔ 1 < ((2 · 𝐴) − 1)))
3228, 31mpbid 234 . . . . 5 (𝐴 ∈ (ℤ‘2) → 1 < ((2 · 𝐴) − 1))
3320, 25, 26, 32ltsub2dd 11247 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − ((2 · 𝐴) − 1)) < ((𝐴↑2) − 1))
3419, 33eqbrtrd 5080 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1)↑2) < ((𝐴↑2) − 1))
3526ltm1d 11566 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) < (𝐴↑2))
36 npcan 10889 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴)
371, 3, 36sylancl 588 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1) + 1) = 𝐴)
3837oveq1d 7165 . . . 4 (𝐴 ∈ (ℤ‘2) → (((𝐴 − 1) + 1)↑2) = (𝐴↑2))
3935, 38breqtrrd 5086 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) < (((𝐴 − 1) + 1)↑2))
40 nonsq 16093 . . 3 (((((𝐴↑2) − 1) ∈ ℕ0 ∧ (𝐴 − 1) ∈ ℕ0) ∧ (((𝐴 − 1)↑2) < ((𝐴↑2) − 1) ∧ ((𝐴↑2) − 1) < (((𝐴 − 1) + 1)↑2))) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ)
4110, 12, 34, 39, 40syl22anc 836 . 2 (𝐴 ∈ (ℤ‘2) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ)
426, 41eldifd 3946 1 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1533  wcel 2110  cdif 3932   class class class wbr 5058  cfv 6349  (class class class)co 7150  cc 10529  cr 10530  1c1 10532   + caddc 10534   · cmul 10536   < clt 10669  cmin 10864  cn 11632  2c2 11686  0cn0 11891  cuz 12237  cq 12342  cexp 13423  csqrt 14586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-q 12343  df-rp 12384  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-gcd 15838  df-numer 16069  df-denom 16070
This theorem is referenced by:  rmspecnonsq  39497  rmxypairf1o  39501  rmxycomplete  39507  rmxyneg  39510  rmxyadd  39511  rmxy1  39512  rmxy0  39513  jm2.22  39585
  Copyright terms: Public domain W3C validator