Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmspecsqrtnq Structured version   Visualization version   GIF version

Theorem rmspecsqrtnq 42917
Description: The discriminant used to define the X and Y sequences has an irrational square root. (Contributed by Stefan O'Rear, 21-Sep-2014.) (Proof shortened by AV, 2-Aug-2021.)
Assertion
Ref Expression
rmspecsqrtnq (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))

Proof of Theorem rmspecsqrtnq
StepHypRef Expression
1 eluzelcn 12890 . . . . 5 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
21sqcld 14184 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℂ)
3 ax-1cn 11213 . . . 4 1 ∈ ℂ
4 subcl 11507 . . . 4 (((𝐴↑2) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴↑2) − 1) ∈ ℂ)
52, 3, 4sylancl 586 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
65sqrtcld 15476 . 2 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
7 eluz2nn 12924 . . . . 5 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
87nnsqcld 14283 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℕ)
9 nnm1nn0 12567 . . . 4 ((𝐴↑2) ∈ ℕ → ((𝐴↑2) − 1) ∈ ℕ0)
108, 9syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ0)
11 nnm1nn0 12567 . . . 4 (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0)
127, 11syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∈ ℕ0)
13 binom2sub1 14260 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1))
141, 13syl 17 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1))
15 2cnd 12344 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℂ)
1615, 1mulcld 11281 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℂ)
173a1i 11 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℂ)
182, 16, 17subsubd 11648 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − ((2 · 𝐴) − 1)) = (((𝐴↑2) − (2 · 𝐴)) + 1))
1914, 18eqtr4d 2780 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1)↑2) = ((𝐴↑2) − ((2 · 𝐴) − 1)))
20 1red 11262 . . . . 5 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℝ)
21 2re 12340 . . . . . . . 8 2 ∈ ℝ
2221a1i 11 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℝ)
23 eluzelre 12889 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
2422, 23remulcld 11291 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℝ)
2524, 20resubcld 11691 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((2 · 𝐴) − 1) ∈ ℝ)
268nnred 12281 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℝ)
27 eluz2gt1 12962 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
2820, 20, 23, 27, 27lt2addmuld 12516 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (1 + 1) < (2 · 𝐴))
29 remulcl 11240 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
3021, 23, 29sylancr 587 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℝ)
3120, 20, 30ltaddsubd 11863 . . . . . 6 (𝐴 ∈ (ℤ‘2) → ((1 + 1) < (2 · 𝐴) ↔ 1 < ((2 · 𝐴) − 1)))
3228, 31mpbid 232 . . . . 5 (𝐴 ∈ (ℤ‘2) → 1 < ((2 · 𝐴) − 1))
3320, 25, 26, 32ltsub2dd 11876 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − ((2 · 𝐴) − 1)) < ((𝐴↑2) − 1))
3419, 33eqbrtrd 5165 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1)↑2) < ((𝐴↑2) − 1))
3526ltm1d 12200 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) < (𝐴↑2))
36 npcan 11517 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴)
371, 3, 36sylancl 586 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1) + 1) = 𝐴)
3837oveq1d 7446 . . . 4 (𝐴 ∈ (ℤ‘2) → (((𝐴 − 1) + 1)↑2) = (𝐴↑2))
3935, 38breqtrrd 5171 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) < (((𝐴 − 1) + 1)↑2))
40 nonsq 16796 . . 3 (((((𝐴↑2) − 1) ∈ ℕ0 ∧ (𝐴 − 1) ∈ ℕ0) ∧ (((𝐴 − 1)↑2) < ((𝐴↑2) − 1) ∧ ((𝐴↑2) − 1) < (((𝐴 − 1) + 1)↑2))) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ)
4110, 12, 34, 39, 40syl22anc 839 . 2 (𝐴 ∈ (ℤ‘2) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ)
426, 41eldifd 3962 1 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2108  cdif 3948   class class class wbr 5143  cfv 6561  (class class class)co 7431  cc 11153  cr 11154  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cmin 11492  cn 12266  2c2 12321  0cn0 12526  cuz 12878  cq 12990  cexp 14102  csqrt 15272
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-gcd 16532  df-numer 16772  df-denom 16773
This theorem is referenced by:  rmspecnonsq  42918  rmxypairf1o  42923  rmxycomplete  42929  rmxyneg  42932  rmxyadd  42933  rmxy1  42934  rmxy0  42935  jm2.22  43007
  Copyright terms: Public domain W3C validator