Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmspecsqrtnq Structured version   Visualization version   GIF version

Theorem rmspecsqrtnq 42901
Description: The discriminant used to define the X and Y sequences has an irrational square root. (Contributed by Stefan O'Rear, 21-Sep-2014.) (Proof shortened by AV, 2-Aug-2021.)
Assertion
Ref Expression
rmspecsqrtnq (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))

Proof of Theorem rmspecsqrtnq
StepHypRef Expression
1 eluzelcn 12812 . . . . 5 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
21sqcld 14116 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℂ)
3 ax-1cn 11133 . . . 4 1 ∈ ℂ
4 subcl 11427 . . . 4 (((𝐴↑2) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴↑2) − 1) ∈ ℂ)
52, 3, 4sylancl 586 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
65sqrtcld 15413 . 2 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
7 eluz2nn 12854 . . . . 5 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
87nnsqcld 14216 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℕ)
9 nnm1nn0 12490 . . . 4 ((𝐴↑2) ∈ ℕ → ((𝐴↑2) − 1) ∈ ℕ0)
108, 9syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ0)
11 nnm1nn0 12490 . . . 4 (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0)
127, 11syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∈ ℕ0)
13 binom2sub1 14193 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1))
141, 13syl 17 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1))
15 2cnd 12271 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℂ)
1615, 1mulcld 11201 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℂ)
173a1i 11 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℂ)
182, 16, 17subsubd 11568 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − ((2 · 𝐴) − 1)) = (((𝐴↑2) − (2 · 𝐴)) + 1))
1914, 18eqtr4d 2768 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1)↑2) = ((𝐴↑2) − ((2 · 𝐴) − 1)))
20 1red 11182 . . . . 5 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℝ)
21 2re 12267 . . . . . . . 8 2 ∈ ℝ
2221a1i 11 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℝ)
23 eluzelre 12811 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
2422, 23remulcld 11211 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℝ)
2524, 20resubcld 11613 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((2 · 𝐴) − 1) ∈ ℝ)
268nnred 12208 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℝ)
27 eluz2gt1 12886 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
2820, 20, 23, 27, 27lt2addmuld 12439 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (1 + 1) < (2 · 𝐴))
29 remulcl 11160 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
3021, 23, 29sylancr 587 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℝ)
3120, 20, 30ltaddsubd 11785 . . . . . 6 (𝐴 ∈ (ℤ‘2) → ((1 + 1) < (2 · 𝐴) ↔ 1 < ((2 · 𝐴) − 1)))
3228, 31mpbid 232 . . . . 5 (𝐴 ∈ (ℤ‘2) → 1 < ((2 · 𝐴) − 1))
3320, 25, 26, 32ltsub2dd 11798 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − ((2 · 𝐴) − 1)) < ((𝐴↑2) − 1))
3419, 33eqbrtrd 5132 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1)↑2) < ((𝐴↑2) − 1))
3526ltm1d 12122 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) < (𝐴↑2))
36 npcan 11437 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴)
371, 3, 36sylancl 586 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1) + 1) = 𝐴)
3837oveq1d 7405 . . . 4 (𝐴 ∈ (ℤ‘2) → (((𝐴 − 1) + 1)↑2) = (𝐴↑2))
3935, 38breqtrrd 5138 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) < (((𝐴 − 1) + 1)↑2))
40 nonsq 16736 . . 3 (((((𝐴↑2) − 1) ∈ ℕ0 ∧ (𝐴 − 1) ∈ ℕ0) ∧ (((𝐴 − 1)↑2) < ((𝐴↑2) − 1) ∧ ((𝐴↑2) − 1) < (((𝐴 − 1) + 1)↑2))) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ)
4110, 12, 34, 39, 40syl22anc 838 . 2 (𝐴 ∈ (ℤ‘2) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ)
426, 41eldifd 3928 1 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  cdif 3914   class class class wbr 5110  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cmin 11412  cn 12193  2c2 12248  0cn0 12449  cuz 12800  cq 12914  cexp 14033  csqrt 15206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-q 12915  df-rp 12959  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-gcd 16472  df-numer 16712  df-denom 16713
This theorem is referenced by:  rmspecnonsq  42902  rmxypairf1o  42907  rmxycomplete  42913  rmxyneg  42916  rmxyadd  42917  rmxy1  42918  rmxy0  42919  jm2.22  42991
  Copyright terms: Public domain W3C validator