Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmspecsqrtnq Structured version   Visualization version   GIF version

Theorem rmspecsqrtnq 42947
Description: The discriminant used to define the X and Y sequences has an irrational square root. (Contributed by Stefan O'Rear, 21-Sep-2014.) (Proof shortened by AV, 2-Aug-2021.)
Assertion
Ref Expression
rmspecsqrtnq (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))

Proof of Theorem rmspecsqrtnq
StepHypRef Expression
1 eluzelcn 12744 . . . . 5 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
21sqcld 14051 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℂ)
3 ax-1cn 11064 . . . 4 1 ∈ ℂ
4 subcl 11359 . . . 4 (((𝐴↑2) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴↑2) − 1) ∈ ℂ)
52, 3, 4sylancl 586 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
65sqrtcld 15347 . 2 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
7 eluz2nn 12786 . . . . 5 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
87nnsqcld 14151 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℕ)
9 nnm1nn0 12422 . . . 4 ((𝐴↑2) ∈ ℕ → ((𝐴↑2) − 1) ∈ ℕ0)
108, 9syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ0)
11 nnm1nn0 12422 . . . 4 (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0)
127, 11syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∈ ℕ0)
13 binom2sub1 14128 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1))
141, 13syl 17 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1))
15 2cnd 12203 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℂ)
1615, 1mulcld 11132 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℂ)
173a1i 11 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℂ)
182, 16, 17subsubd 11500 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − ((2 · 𝐴) − 1)) = (((𝐴↑2) − (2 · 𝐴)) + 1))
1914, 18eqtr4d 2769 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1)↑2) = ((𝐴↑2) − ((2 · 𝐴) − 1)))
20 1red 11113 . . . . 5 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℝ)
21 2re 12199 . . . . . . . 8 2 ∈ ℝ
2221a1i 11 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℝ)
23 eluzelre 12743 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
2422, 23remulcld 11142 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℝ)
2524, 20resubcld 11545 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((2 · 𝐴) − 1) ∈ ℝ)
268nnred 12140 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℝ)
27 eluz2gt1 12818 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
2820, 20, 23, 27, 27lt2addmuld 12371 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (1 + 1) < (2 · 𝐴))
29 remulcl 11091 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
3021, 23, 29sylancr 587 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℝ)
3120, 20, 30ltaddsubd 11717 . . . . . 6 (𝐴 ∈ (ℤ‘2) → ((1 + 1) < (2 · 𝐴) ↔ 1 < ((2 · 𝐴) − 1)))
3228, 31mpbid 232 . . . . 5 (𝐴 ∈ (ℤ‘2) → 1 < ((2 · 𝐴) − 1))
3320, 25, 26, 32ltsub2dd 11730 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − ((2 · 𝐴) − 1)) < ((𝐴↑2) − 1))
3419, 33eqbrtrd 5111 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1)↑2) < ((𝐴↑2) − 1))
3526ltm1d 12054 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) < (𝐴↑2))
36 npcan 11369 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴)
371, 3, 36sylancl 586 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1) + 1) = 𝐴)
3837oveq1d 7361 . . . 4 (𝐴 ∈ (ℤ‘2) → (((𝐴 − 1) + 1)↑2) = (𝐴↑2))
3935, 38breqtrrd 5117 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) < (((𝐴 − 1) + 1)↑2))
40 nonsq 16670 . . 3 (((((𝐴↑2) − 1) ∈ ℕ0 ∧ (𝐴 − 1) ∈ ℕ0) ∧ (((𝐴 − 1)↑2) < ((𝐴↑2) − 1) ∧ ((𝐴↑2) − 1) < (((𝐴 − 1) + 1)↑2))) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ)
4110, 12, 34, 39, 40syl22anc 838 . 2 (𝐴 ∈ (ℤ‘2) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ)
426, 41eldifd 3908 1 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1541  wcel 2111  cdif 3894   class class class wbr 5089  cfv 6481  (class class class)co 7346  cc 11004  cr 11005  1c1 11007   + caddc 11009   · cmul 11011   < clt 11146  cmin 11344  cn 12125  2c2 12180  0cn0 12381  cuz 12732  cq 12846  cexp 13968  csqrt 15140
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-numer 16646  df-denom 16647
This theorem is referenced by:  rmspecnonsq  42948  rmxypairf1o  42952  rmxycomplete  42958  rmxyneg  42961  rmxyadd  42962  rmxy1  42963  rmxy0  42964  jm2.22  43036
  Copyright terms: Public domain W3C validator