| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rmspecsqrtnq | Structured version Visualization version GIF version | ||
| Description: The discriminant used to define the X and Y sequences has an irrational square root. (Contributed by Stefan O'Rear, 21-Sep-2014.) (Proof shortened by AV, 2-Aug-2021.) |
| Ref | Expression |
|---|---|
| rmspecsqrtnq | ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelcn 12812 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℂ) | |
| 2 | 1 | sqcld 14116 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴↑2) ∈ ℂ) |
| 3 | ax-1cn 11133 | . . . 4 ⊢ 1 ∈ ℂ | |
| 4 | subcl 11427 | . . . 4 ⊢ (((𝐴↑2) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴↑2) − 1) ∈ ℂ) | |
| 5 | 2, 3, 4 | sylancl 586 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℂ) |
| 6 | 5 | sqrtcld 15413 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ) |
| 7 | eluz2nn 12854 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) | |
| 8 | 7 | nnsqcld 14216 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴↑2) ∈ ℕ) |
| 9 | nnm1nn0 12490 | . . . 4 ⊢ ((𝐴↑2) ∈ ℕ → ((𝐴↑2) − 1) ∈ ℕ0) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℕ0) |
| 11 | nnm1nn0 12490 | . . . 4 ⊢ (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0) | |
| 12 | 7, 11 | syl 17 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 − 1) ∈ ℕ0) |
| 13 | binom2sub1 14193 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1)) | |
| 14 | 1, 13 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1)) |
| 15 | 2cnd 12271 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 2 ∈ ℂ) | |
| 16 | 15, 1 | mulcld 11201 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (2 · 𝐴) ∈ ℂ) |
| 17 | 3 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℂ) |
| 18 | 2, 16, 17 | subsubd 11568 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − ((2 · 𝐴) − 1)) = (((𝐴↑2) − (2 · 𝐴)) + 1)) |
| 19 | 14, 18 | eqtr4d 2768 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 − 1)↑2) = ((𝐴↑2) − ((2 · 𝐴) − 1))) |
| 20 | 1red 11182 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℝ) | |
| 21 | 2re 12267 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 2 ∈ ℝ) |
| 23 | eluzelre 12811 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℝ) | |
| 24 | 22, 23 | remulcld 11211 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (2 · 𝐴) ∈ ℝ) |
| 25 | 24, 20 | resubcld 11613 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((2 · 𝐴) − 1) ∈ ℝ) |
| 26 | 8 | nnred 12208 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴↑2) ∈ ℝ) |
| 27 | eluz2gt1 12886 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 < 𝐴) | |
| 28 | 20, 20, 23, 27, 27 | lt2addmuld 12439 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1 + 1) < (2 · 𝐴)) |
| 29 | remulcl 11160 | . . . . . . . 8 ⊢ ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ) | |
| 30 | 21, 23, 29 | sylancr 587 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → (2 · 𝐴) ∈ ℝ) |
| 31 | 20, 20, 30 | ltaddsubd 11785 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((1 + 1) < (2 · 𝐴) ↔ 1 < ((2 · 𝐴) − 1))) |
| 32 | 28, 31 | mpbid 232 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 < ((2 · 𝐴) − 1)) |
| 33 | 20, 25, 26, 32 | ltsub2dd 11798 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − ((2 · 𝐴) − 1)) < ((𝐴↑2) − 1)) |
| 34 | 19, 33 | eqbrtrd 5132 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 − 1)↑2) < ((𝐴↑2) − 1)) |
| 35 | 26 | ltm1d 12122 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) < (𝐴↑2)) |
| 36 | npcan 11437 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴) | |
| 37 | 1, 3, 36 | sylancl 586 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 − 1) + 1) = 𝐴) |
| 38 | 37 | oveq1d 7405 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (((𝐴 − 1) + 1)↑2) = (𝐴↑2)) |
| 39 | 35, 38 | breqtrrd 5138 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) < (((𝐴 − 1) + 1)↑2)) |
| 40 | nonsq 16736 | . . 3 ⊢ (((((𝐴↑2) − 1) ∈ ℕ0 ∧ (𝐴 − 1) ∈ ℕ0) ∧ (((𝐴 − 1)↑2) < ((𝐴↑2) − 1) ∧ ((𝐴↑2) − 1) < (((𝐴 − 1) + 1)↑2))) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ) | |
| 41 | 10, 12, 34, 39, 40 | syl22anc 838 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ) |
| 42 | 6, 41 | eldifd 3928 | 1 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3914 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 1c1 11076 + caddc 11078 · cmul 11080 < clt 11215 − cmin 11412 ℕcn 12193 2c2 12248 ℕ0cn0 12449 ℤ≥cuz 12800 ℚcq 12914 ↑cexp 14033 √csqrt 15206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-gcd 16472 df-numer 16712 df-denom 16713 |
| This theorem is referenced by: rmspecnonsq 42902 rmxypairf1o 42907 rmxycomplete 42913 rmxyneg 42916 rmxyadd 42917 rmxy1 42918 rmxy0 42919 jm2.22 42991 |
| Copyright terms: Public domain | W3C validator |