Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmspecsqrtnq Structured version   Visualization version   GIF version

Theorem rmspecsqrtnq 42894
Description: The discriminant used to define the X and Y sequences has an irrational square root. (Contributed by Stefan O'Rear, 21-Sep-2014.) (Proof shortened by AV, 2-Aug-2021.)
Assertion
Ref Expression
rmspecsqrtnq (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))

Proof of Theorem rmspecsqrtnq
StepHypRef Expression
1 eluzelcn 12805 . . . . 5 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℂ)
21sqcld 14109 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℂ)
3 ax-1cn 11126 . . . 4 1 ∈ ℂ
4 subcl 11420 . . . 4 (((𝐴↑2) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴↑2) − 1) ∈ ℂ)
52, 3, 4sylancl 586 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℂ)
65sqrtcld 15406 . 2 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ)
7 eluz2nn 12847 . . . . 5 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
87nnsqcld 14209 . . . 4 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℕ)
9 nnm1nn0 12483 . . . 4 ((𝐴↑2) ∈ ℕ → ((𝐴↑2) − 1) ∈ ℕ0)
108, 9syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) ∈ ℕ0)
11 nnm1nn0 12483 . . . 4 (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0)
127, 11syl 17 . . 3 (𝐴 ∈ (ℤ‘2) → (𝐴 − 1) ∈ ℕ0)
13 binom2sub1 14186 . . . . . 6 (𝐴 ∈ ℂ → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1))
141, 13syl 17 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1))
15 2cnd 12264 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℂ)
1615, 1mulcld 11194 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℂ)
173a1i 11 . . . . . 6 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℂ)
182, 16, 17subsubd 11561 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − ((2 · 𝐴) − 1)) = (((𝐴↑2) − (2 · 𝐴)) + 1))
1914, 18eqtr4d 2767 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1)↑2) = ((𝐴↑2) − ((2 · 𝐴) − 1)))
20 1red 11175 . . . . 5 (𝐴 ∈ (ℤ‘2) → 1 ∈ ℝ)
21 2re 12260 . . . . . . . 8 2 ∈ ℝ
2221a1i 11 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 2 ∈ ℝ)
23 eluzelre 12804 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℝ)
2422, 23remulcld 11204 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℝ)
2524, 20resubcld 11606 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((2 · 𝐴) − 1) ∈ ℝ)
268nnred 12201 . . . . 5 (𝐴 ∈ (ℤ‘2) → (𝐴↑2) ∈ ℝ)
27 eluz2gt1 12879 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → 1 < 𝐴)
2820, 20, 23, 27, 27lt2addmuld 12432 . . . . . 6 (𝐴 ∈ (ℤ‘2) → (1 + 1) < (2 · 𝐴))
29 remulcl 11153 . . . . . . . 8 ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ)
3021, 23, 29sylancr 587 . . . . . . 7 (𝐴 ∈ (ℤ‘2) → (2 · 𝐴) ∈ ℝ)
3120, 20, 30ltaddsubd 11778 . . . . . 6 (𝐴 ∈ (ℤ‘2) → ((1 + 1) < (2 · 𝐴) ↔ 1 < ((2 · 𝐴) − 1)))
3228, 31mpbid 232 . . . . 5 (𝐴 ∈ (ℤ‘2) → 1 < ((2 · 𝐴) − 1))
3320, 25, 26, 32ltsub2dd 11791 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − ((2 · 𝐴) − 1)) < ((𝐴↑2) − 1))
3419, 33eqbrtrd 5129 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1)↑2) < ((𝐴↑2) − 1))
3526ltm1d 12115 . . . 4 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) < (𝐴↑2))
36 npcan 11430 . . . . . 6 ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴)
371, 3, 36sylancl 586 . . . . 5 (𝐴 ∈ (ℤ‘2) → ((𝐴 − 1) + 1) = 𝐴)
3837oveq1d 7402 . . . 4 (𝐴 ∈ (ℤ‘2) → (((𝐴 − 1) + 1)↑2) = (𝐴↑2))
3935, 38breqtrrd 5135 . . 3 (𝐴 ∈ (ℤ‘2) → ((𝐴↑2) − 1) < (((𝐴 − 1) + 1)↑2))
40 nonsq 16729 . . 3 (((((𝐴↑2) − 1) ∈ ℕ0 ∧ (𝐴 − 1) ∈ ℕ0) ∧ (((𝐴 − 1)↑2) < ((𝐴↑2) − 1) ∧ ((𝐴↑2) − 1) < (((𝐴 − 1) + 1)↑2))) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ)
4110, 12, 34, 39, 40syl22anc 838 . 2 (𝐴 ∈ (ℤ‘2) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ)
426, 41eldifd 3925 1 (𝐴 ∈ (ℤ‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1540  wcel 2109  cdif 3911   class class class wbr 5107  cfv 6511  (class class class)co 7387  cc 11066  cr 11067  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cmin 11405  cn 12186  2c2 12241  0cn0 12442  cuz 12793  cq 12907  cexp 14026  csqrt 15199
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-q 12908  df-rp 12952  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-numer 16705  df-denom 16706
This theorem is referenced by:  rmspecnonsq  42895  rmxypairf1o  42900  rmxycomplete  42906  rmxyneg  42909  rmxyadd  42910  rmxy1  42911  rmxy0  42912  jm2.22  42984
  Copyright terms: Public domain W3C validator