| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rmspecsqrtnq | Structured version Visualization version GIF version | ||
| Description: The discriminant used to define the X and Y sequences has an irrational square root. (Contributed by Stefan O'Rear, 21-Sep-2014.) (Proof shortened by AV, 2-Aug-2021.) |
| Ref | Expression |
|---|---|
| rmspecsqrtnq | ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eluzelcn 12781 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℂ) | |
| 2 | 1 | sqcld 14085 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴↑2) ∈ ℂ) |
| 3 | ax-1cn 11102 | . . . 4 ⊢ 1 ∈ ℂ | |
| 4 | subcl 11396 | . . . 4 ⊢ (((𝐴↑2) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴↑2) − 1) ∈ ℂ) | |
| 5 | 2, 3, 4 | sylancl 586 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℂ) |
| 6 | 5 | sqrtcld 15382 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ) |
| 7 | eluz2nn 12823 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) | |
| 8 | 7 | nnsqcld 14185 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴↑2) ∈ ℕ) |
| 9 | nnm1nn0 12459 | . . . 4 ⊢ ((𝐴↑2) ∈ ℕ → ((𝐴↑2) − 1) ∈ ℕ0) | |
| 10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℕ0) |
| 11 | nnm1nn0 12459 | . . . 4 ⊢ (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0) | |
| 12 | 7, 11 | syl 17 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 − 1) ∈ ℕ0) |
| 13 | binom2sub1 14162 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1)) | |
| 14 | 1, 13 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1)) |
| 15 | 2cnd 12240 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 2 ∈ ℂ) | |
| 16 | 15, 1 | mulcld 11170 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (2 · 𝐴) ∈ ℂ) |
| 17 | 3 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℂ) |
| 18 | 2, 16, 17 | subsubd 11537 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − ((2 · 𝐴) − 1)) = (((𝐴↑2) − (2 · 𝐴)) + 1)) |
| 19 | 14, 18 | eqtr4d 2767 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 − 1)↑2) = ((𝐴↑2) − ((2 · 𝐴) − 1))) |
| 20 | 1red 11151 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℝ) | |
| 21 | 2re 12236 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
| 22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 2 ∈ ℝ) |
| 23 | eluzelre 12780 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℝ) | |
| 24 | 22, 23 | remulcld 11180 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (2 · 𝐴) ∈ ℝ) |
| 25 | 24, 20 | resubcld 11582 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((2 · 𝐴) − 1) ∈ ℝ) |
| 26 | 8 | nnred 12177 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴↑2) ∈ ℝ) |
| 27 | eluz2gt1 12855 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 < 𝐴) | |
| 28 | 20, 20, 23, 27, 27 | lt2addmuld 12408 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1 + 1) < (2 · 𝐴)) |
| 29 | remulcl 11129 | . . . . . . . 8 ⊢ ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ) | |
| 30 | 21, 23, 29 | sylancr 587 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → (2 · 𝐴) ∈ ℝ) |
| 31 | 20, 20, 30 | ltaddsubd 11754 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((1 + 1) < (2 · 𝐴) ↔ 1 < ((2 · 𝐴) − 1))) |
| 32 | 28, 31 | mpbid 232 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 < ((2 · 𝐴) − 1)) |
| 33 | 20, 25, 26, 32 | ltsub2dd 11767 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − ((2 · 𝐴) − 1)) < ((𝐴↑2) − 1)) |
| 34 | 19, 33 | eqbrtrd 5124 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 − 1)↑2) < ((𝐴↑2) − 1)) |
| 35 | 26 | ltm1d 12091 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) < (𝐴↑2)) |
| 36 | npcan 11406 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴) | |
| 37 | 1, 3, 36 | sylancl 586 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 − 1) + 1) = 𝐴) |
| 38 | 37 | oveq1d 7384 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (((𝐴 − 1) + 1)↑2) = (𝐴↑2)) |
| 39 | 35, 38 | breqtrrd 5130 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) < (((𝐴 − 1) + 1)↑2)) |
| 40 | nonsq 16705 | . . 3 ⊢ (((((𝐴↑2) − 1) ∈ ℕ0 ∧ (𝐴 − 1) ∈ ℕ0) ∧ (((𝐴 − 1)↑2) < ((𝐴↑2) − 1) ∧ ((𝐴↑2) − 1) < (((𝐴 − 1) + 1)↑2))) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ) | |
| 41 | 10, 12, 34, 39, 40 | syl22anc 838 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ) |
| 42 | 6, 41 | eldifd 3922 | 1 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℂcc 11042 ℝcr 11043 1c1 11045 + caddc 11047 · cmul 11049 < clt 11184 − cmin 11381 ℕcn 12162 2c2 12217 ℕ0cn0 12418 ℤ≥cuz 12769 ℚcq 12883 ↑cexp 14002 √csqrt 15175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-z 12506 df-uz 12770 df-q 12884 df-rp 12928 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-gcd 16441 df-numer 16681 df-denom 16682 |
| This theorem is referenced by: rmspecnonsq 42868 rmxypairf1o 42873 rmxycomplete 42879 rmxyneg 42882 rmxyadd 42883 rmxy1 42884 rmxy0 42885 jm2.22 42957 |
| Copyright terms: Public domain | W3C validator |