Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmspecsqrtnq | Structured version Visualization version GIF version |
Description: The discriminant used to define the X and Y sequences has an irrational square root. (Contributed by Stefan O'Rear, 21-Sep-2014.) (Proof shortened by AV, 2-Aug-2021.) |
Ref | Expression |
---|---|
rmspecsqrtnq | ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eluzelcn 12594 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℂ) | |
2 | 1 | sqcld 13862 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴↑2) ∈ ℂ) |
3 | ax-1cn 10929 | . . . 4 ⊢ 1 ∈ ℂ | |
4 | subcl 11220 | . . . 4 ⊢ (((𝐴↑2) ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴↑2) − 1) ∈ ℂ) | |
5 | 2, 3, 4 | sylancl 586 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℂ) |
6 | 5 | sqrtcld 15149 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ ℂ) |
7 | eluz2nn 12624 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) | |
8 | 7 | nnsqcld 13959 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴↑2) ∈ ℕ) |
9 | nnm1nn0 12274 | . . . 4 ⊢ ((𝐴↑2) ∈ ℕ → ((𝐴↑2) − 1) ∈ ℕ0) | |
10 | 8, 9 | syl 17 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) ∈ ℕ0) |
11 | nnm1nn0 12274 | . . . 4 ⊢ (𝐴 ∈ ℕ → (𝐴 − 1) ∈ ℕ0) | |
12 | 7, 11 | syl 17 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴 − 1) ∈ ℕ0) |
13 | binom2sub1 13936 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1)) | |
14 | 1, 13 | syl 17 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 − 1)↑2) = (((𝐴↑2) − (2 · 𝐴)) + 1)) |
15 | 2cnd 12051 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 2 ∈ ℂ) | |
16 | 15, 1 | mulcld 10995 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (2 · 𝐴) ∈ ℂ) |
17 | 3 | a1i 11 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℂ) |
18 | 2, 16, 17 | subsubd 11360 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − ((2 · 𝐴) − 1)) = (((𝐴↑2) − (2 · 𝐴)) + 1)) |
19 | 14, 18 | eqtr4d 2781 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 − 1)↑2) = ((𝐴↑2) − ((2 · 𝐴) − 1))) |
20 | 1red 10976 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 ∈ ℝ) | |
21 | 2re 12047 | . . . . . . . 8 ⊢ 2 ∈ ℝ | |
22 | 21 | a1i 11 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 2 ∈ ℝ) |
23 | eluzelre 12593 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℝ) | |
24 | 22, 23 | remulcld 11005 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (2 · 𝐴) ∈ ℝ) |
25 | 24, 20 | resubcld 11403 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((2 · 𝐴) − 1) ∈ ℝ) |
26 | 8 | nnred 11988 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → (𝐴↑2) ∈ ℝ) |
27 | eluz2gt1 12660 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 < 𝐴) | |
28 | 20, 20, 23, 27, 27 | lt2addmuld 12223 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → (1 + 1) < (2 · 𝐴)) |
29 | remulcl 10956 | . . . . . . . 8 ⊢ ((2 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (2 · 𝐴) ∈ ℝ) | |
30 | 21, 23, 29 | sylancr 587 | . . . . . . 7 ⊢ (𝐴 ∈ (ℤ≥‘2) → (2 · 𝐴) ∈ ℝ) |
31 | 20, 20, 30 | ltaddsubd 11575 | . . . . . 6 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((1 + 1) < (2 · 𝐴) ↔ 1 < ((2 · 𝐴) − 1))) |
32 | 28, 31 | mpbid 231 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → 1 < ((2 · 𝐴) − 1)) |
33 | 20, 25, 26, 32 | ltsub2dd 11588 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − ((2 · 𝐴) − 1)) < ((𝐴↑2) − 1)) |
34 | 19, 33 | eqbrtrd 5096 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 − 1)↑2) < ((𝐴↑2) − 1)) |
35 | 26 | ltm1d 11907 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) < (𝐴↑2)) |
36 | npcan 11230 | . . . . . 6 ⊢ ((𝐴 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝐴 − 1) + 1) = 𝐴) | |
37 | 1, 3, 36 | sylancl 586 | . . . . 5 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴 − 1) + 1) = 𝐴) |
38 | 37 | oveq1d 7290 | . . . 4 ⊢ (𝐴 ∈ (ℤ≥‘2) → (((𝐴 − 1) + 1)↑2) = (𝐴↑2)) |
39 | 35, 38 | breqtrrd 5102 | . . 3 ⊢ (𝐴 ∈ (ℤ≥‘2) → ((𝐴↑2) − 1) < (((𝐴 − 1) + 1)↑2)) |
40 | nonsq 16463 | . . 3 ⊢ (((((𝐴↑2) − 1) ∈ ℕ0 ∧ (𝐴 − 1) ∈ ℕ0) ∧ (((𝐴 − 1)↑2) < ((𝐴↑2) − 1) ∧ ((𝐴↑2) − 1) < (((𝐴 − 1) + 1)↑2))) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ) | |
41 | 10, 12, 34, 39, 40 | syl22anc 836 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → ¬ (√‘((𝐴↑2) − 1)) ∈ ℚ) |
42 | 6, 41 | eldifd 3898 | 1 ⊢ (𝐴 ∈ (ℤ≥‘2) → (√‘((𝐴↑2) − 1)) ∈ (ℂ ∖ ℚ)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1539 ∈ wcel 2106 ∖ cdif 3884 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℂcc 10869 ℝcr 10870 1c1 10872 + caddc 10874 · cmul 10876 < clt 11009 − cmin 11205 ℕcn 11973 2c2 12028 ℕ0cn0 12233 ℤ≥cuz 12582 ℚcq 12688 ↑cexp 13782 √csqrt 14944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-rp 12731 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-gcd 16202 df-numer 16439 df-denom 16440 |
This theorem is referenced by: rmspecnonsq 40729 rmxypairf1o 40733 rmxycomplete 40739 rmxyneg 40742 rmxyadd 40743 rmxy1 40744 rmxy0 40745 jm2.22 40817 |
Copyright terms: Public domain | W3C validator |