| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngsubdi | Structured version Visualization version GIF version | ||
| Description: Ring multiplication distributes over subtraction. (subdi 11587 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdi 20192. (Revised by AV, 23-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngsubdi.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngsubdi.t | ⊢ · = (.r‘𝑅) |
| rngsubdi.m | ⊢ − = (-g‘𝑅) |
| rngsubdi.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngsubdi.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rngsubdi.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| rngsubdi.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| rngsubdi | ⊢ (𝜑 → (𝑋 · (𝑌 − 𝑍)) = ((𝑋 · 𝑌) − (𝑋 · 𝑍))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngsubdi.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 2 | rngsubdi.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 3 | rngsubdi.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 4 | rngsubdi.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | eqid 2729 | . . . . 5 ⊢ (invg‘𝑅) = (invg‘𝑅) | |
| 6 | rnggrp 20043 | . . . . . 6 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 7 | 1, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 8 | rngsubdi.z | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
| 9 | 4, 5, 7, 8 | grpinvcld 18896 | . . . 4 ⊢ (𝜑 → ((invg‘𝑅)‘𝑍) ∈ 𝐵) |
| 10 | eqid 2729 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 11 | rngsubdi.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 12 | 4, 10, 11 | rngdi 20045 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ ((invg‘𝑅)‘𝑍) ∈ 𝐵)) → (𝑋 · (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g‘𝑅)(𝑋 · ((invg‘𝑅)‘𝑍)))) |
| 13 | 1, 2, 3, 9, 12 | syl13anc 1374 | . . 3 ⊢ (𝜑 → (𝑋 · (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g‘𝑅)(𝑋 · ((invg‘𝑅)‘𝑍)))) |
| 14 | 4, 11, 5, 1, 2, 8 | rngmneg2 20053 | . . . 4 ⊢ (𝜑 → (𝑋 · ((invg‘𝑅)‘𝑍)) = ((invg‘𝑅)‘(𝑋 · 𝑍))) |
| 15 | 14 | oveq2d 7385 | . . 3 ⊢ (𝜑 → ((𝑋 · 𝑌)(+g‘𝑅)(𝑋 · ((invg‘𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g‘𝑅)((invg‘𝑅)‘(𝑋 · 𝑍)))) |
| 16 | 13, 15 | eqtrd 2764 | . 2 ⊢ (𝜑 → (𝑋 · (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g‘𝑅)((invg‘𝑅)‘(𝑋 · 𝑍)))) |
| 17 | rngsubdi.m | . . . . 5 ⊢ − = (-g‘𝑅) | |
| 18 | 4, 10, 5, 17 | grpsubval 18893 | . . . 4 ⊢ ((𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑌 − 𝑍) = (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) |
| 19 | 3, 8, 18 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑌 − 𝑍) = (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍))) |
| 20 | 19 | oveq2d 7385 | . 2 ⊢ (𝜑 → (𝑋 · (𝑌 − 𝑍)) = (𝑋 · (𝑌(+g‘𝑅)((invg‘𝑅)‘𝑍)))) |
| 21 | 4, 11 | rngcl 20049 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 22 | 1, 2, 3, 21 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| 23 | 4, 11 | rngcl 20049 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) → (𝑋 · 𝑍) ∈ 𝐵) |
| 24 | 1, 2, 8, 23 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑍) ∈ 𝐵) |
| 25 | 4, 10, 5, 17 | grpsubval 18893 | . . 3 ⊢ (((𝑋 · 𝑌) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑌) − (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g‘𝑅)((invg‘𝑅)‘(𝑋 · 𝑍)))) |
| 26 | 22, 24, 25 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑋 · 𝑌) − (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g‘𝑅)((invg‘𝑅)‘(𝑋 · 𝑍)))) |
| 27 | 16, 20, 26 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (𝑋 · (𝑌 − 𝑍)) = ((𝑋 · 𝑌) − (𝑋 · 𝑍))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6499 (class class class)co 7369 Basecbs 17155 +gcplusg 17196 .rcmulr 17197 Grpcgrp 18841 invgcminusg 18842 -gcsg 18843 Rngcrng 20037 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-0g 17380 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-grp 18844 df-minusg 18845 df-sbg 18846 df-abl 19689 df-mgp 20026 df-rng 20038 |
| This theorem is referenced by: ringsubdi 20192 2idlcpblrng 21157 rngqiprngimfolem 21176 rngqiprngfulem5 21201 |
| Copyright terms: Public domain | W3C validator |