MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngsubdi Structured version   Visualization version   GIF version

Theorem rngsubdi 20056
Description: Ring multiplication distributes over subtraction. (subdi 11587 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) Generalization of ringsubdi 20192. (Revised by AV, 23-Feb-2025.)
Hypotheses
Ref Expression
rngsubdi.b 𝐵 = (Base‘𝑅)
rngsubdi.t · = (.r𝑅)
rngsubdi.m = (-g𝑅)
rngsubdi.r (𝜑𝑅 ∈ Rng)
rngsubdi.x (𝜑𝑋𝐵)
rngsubdi.y (𝜑𝑌𝐵)
rngsubdi.z (𝜑𝑍𝐵)
Assertion
Ref Expression
rngsubdi (𝜑 → (𝑋 · (𝑌 𝑍)) = ((𝑋 · 𝑌) (𝑋 · 𝑍)))

Proof of Theorem rngsubdi
StepHypRef Expression
1 rngsubdi.r . . . 4 (𝜑𝑅 ∈ Rng)
2 rngsubdi.x . . . 4 (𝜑𝑋𝐵)
3 rngsubdi.y . . . 4 (𝜑𝑌𝐵)
4 rngsubdi.b . . . . 5 𝐵 = (Base‘𝑅)
5 eqid 2729 . . . . 5 (invg𝑅) = (invg𝑅)
6 rnggrp 20043 . . . . . 6 (𝑅 ∈ Rng → 𝑅 ∈ Grp)
71, 6syl 17 . . . . 5 (𝜑𝑅 ∈ Grp)
8 rngsubdi.z . . . . 5 (𝜑𝑍𝐵)
94, 5, 7, 8grpinvcld 18896 . . . 4 (𝜑 → ((invg𝑅)‘𝑍) ∈ 𝐵)
10 eqid 2729 . . . . 5 (+g𝑅) = (+g𝑅)
11 rngsubdi.t . . . . 5 · = (.r𝑅)
124, 10, 11rngdi 20045 . . . 4 ((𝑅 ∈ Rng ∧ (𝑋𝐵𝑌𝐵 ∧ ((invg𝑅)‘𝑍) ∈ 𝐵)) → (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)(𝑋 · ((invg𝑅)‘𝑍))))
131, 2, 3, 9, 12syl13anc 1374 . . 3 (𝜑 → (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)(𝑋 · ((invg𝑅)‘𝑍))))
144, 11, 5, 1, 2, 8rngmneg2 20053 . . . 4 (𝜑 → (𝑋 · ((invg𝑅)‘𝑍)) = ((invg𝑅)‘(𝑋 · 𝑍)))
1514oveq2d 7385 . . 3 (𝜑 → ((𝑋 · 𝑌)(+g𝑅)(𝑋 · ((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
1613, 15eqtrd 2764 . 2 (𝜑 → (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
17 rngsubdi.m . . . . 5 = (-g𝑅)
184, 10, 5, 17grpsubval 18893 . . . 4 ((𝑌𝐵𝑍𝐵) → (𝑌 𝑍) = (𝑌(+g𝑅)((invg𝑅)‘𝑍)))
193, 8, 18syl2anc 584 . . 3 (𝜑 → (𝑌 𝑍) = (𝑌(+g𝑅)((invg𝑅)‘𝑍)))
2019oveq2d 7385 . 2 (𝜑 → (𝑋 · (𝑌 𝑍)) = (𝑋 · (𝑌(+g𝑅)((invg𝑅)‘𝑍))))
214, 11rngcl 20049 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑌𝐵) → (𝑋 · 𝑌) ∈ 𝐵)
221, 2, 3, 21syl3anc 1373 . . 3 (𝜑 → (𝑋 · 𝑌) ∈ 𝐵)
234, 11rngcl 20049 . . . 4 ((𝑅 ∈ Rng ∧ 𝑋𝐵𝑍𝐵) → (𝑋 · 𝑍) ∈ 𝐵)
241, 2, 8, 23syl3anc 1373 . . 3 (𝜑 → (𝑋 · 𝑍) ∈ 𝐵)
254, 10, 5, 17grpsubval 18893 . . 3 (((𝑋 · 𝑌) ∈ 𝐵 ∧ (𝑋 · 𝑍) ∈ 𝐵) → ((𝑋 · 𝑌) (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
2622, 24, 25syl2anc 584 . 2 (𝜑 → ((𝑋 · 𝑌) (𝑋 · 𝑍)) = ((𝑋 · 𝑌)(+g𝑅)((invg𝑅)‘(𝑋 · 𝑍))))
2716, 20, 263eqtr4d 2774 1 (𝜑 → (𝑋 · (𝑌 𝑍)) = ((𝑋 · 𝑌) (𝑋 · 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  cfv 6499  (class class class)co 7369  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  Grpcgrp 18841  invgcminusg 18842  -gcsg 18843  Rngcrng 20037
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-0g 17380  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-grp 18844  df-minusg 18845  df-sbg 18846  df-abl 19689  df-mgp 20026  df-rng 20038
This theorem is referenced by:  ringsubdi  20192  2idlcpblrng  21157  rngqiprngimfolem  21176  rngqiprngfulem5  21201
  Copyright terms: Public domain W3C validator