| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rngm2neg | Structured version Visualization version GIF version | ||
| Description: Double negation of a product in a non-unital ring (mul2neg 11674 analog). (Contributed by Mario Carneiro, 4-Dec-2014.) Generalization of ringm2neg 20264. (Revised by AV, 17-Feb-2025.) |
| Ref | Expression |
|---|---|
| rngneglmul.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngneglmul.t | ⊢ · = (.r‘𝑅) |
| rngneglmul.n | ⊢ 𝑁 = (invg‘𝑅) |
| rngneglmul.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
| rngneglmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| rngneglmul.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| rngm2neg | ⊢ (𝜑 → ((𝑁‘𝑋) · (𝑁‘𝑌)) = (𝑋 · 𝑌)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngneglmul.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | rngneglmul.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 3 | rngneglmul.n | . . 3 ⊢ 𝑁 = (invg‘𝑅) | |
| 4 | rngneglmul.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
| 5 | rngneglmul.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 6 | rnggrp 20116 | . . . . 5 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
| 7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 8 | rngneglmul.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 9 | 1, 3, 7, 8 | grpinvcld 18969 | . . 3 ⊢ (𝜑 → (𝑁‘𝑌) ∈ 𝐵) |
| 10 | 1, 2, 3, 4, 5, 9 | rngmneg1 20125 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋) · (𝑁‘𝑌)) = (𝑁‘(𝑋 · (𝑁‘𝑌)))) |
| 11 | 1, 2, 3, 4, 5, 8 | rngmneg2 20126 | . . 3 ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
| 12 | 11 | fveq2d 6879 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 · (𝑁‘𝑌))) = (𝑁‘(𝑁‘(𝑋 · 𝑌)))) |
| 13 | 1, 2 | rngcl 20122 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 14 | 4, 5, 8, 13 | syl3anc 1373 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
| 15 | 1, 3 | grpinvinv 18986 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 𝑌) ∈ 𝐵) → (𝑁‘(𝑁‘(𝑋 · 𝑌))) = (𝑋 · 𝑌)) |
| 16 | 7, 14, 15 | syl2anc 584 | . 2 ⊢ (𝜑 → (𝑁‘(𝑁‘(𝑋 · 𝑌))) = (𝑋 · 𝑌)) |
| 17 | 10, 12, 16 | 3eqtrd 2774 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) · (𝑁‘𝑌)) = (𝑋 · 𝑌)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ‘cfv 6530 (class class class)co 7403 Basecbs 17226 .rcmulr 17270 Grpcgrp 18914 invgcminusg 18915 Rngcrng 20110 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-plusg 17282 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-minusg 18918 df-abl 19762 df-mgp 20099 df-rng 20111 |
| This theorem is referenced by: ringm2neg 20264 |
| Copyright terms: Public domain | W3C validator |