![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rngm2neg | Structured version Visualization version GIF version |
Description: Double negation of a product in a non-unital ring (mul2neg 11685 analog). (Contributed by Mario Carneiro, 4-Dec-2014.) Generalization of ringm2neg 20254. (Revised by AV, 17-Feb-2025.) |
Ref | Expression |
---|---|
rngneglmul.b | ⊢ 𝐵 = (Base‘𝑅) |
rngneglmul.t | ⊢ · = (.r‘𝑅) |
rngneglmul.n | ⊢ 𝑁 = (invg‘𝑅) |
rngneglmul.r | ⊢ (𝜑 → 𝑅 ∈ Rng) |
rngneglmul.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
rngneglmul.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
Ref | Expression |
---|---|
rngm2neg | ⊢ (𝜑 → ((𝑁‘𝑋) · (𝑁‘𝑌)) = (𝑋 · 𝑌)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngneglmul.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
2 | rngneglmul.t | . . 3 ⊢ · = (.r‘𝑅) | |
3 | rngneglmul.n | . . 3 ⊢ 𝑁 = (invg‘𝑅) | |
4 | rngneglmul.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Rng) | |
5 | rngneglmul.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
6 | rnggrp 20110 | . . . . 5 ⊢ (𝑅 ∈ Rng → 𝑅 ∈ Grp) | |
7 | 4, 6 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Grp) |
8 | rngneglmul.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | 1, 3, 7, 8 | grpinvcld 18953 | . . 3 ⊢ (𝜑 → (𝑁‘𝑌) ∈ 𝐵) |
10 | 1, 2, 3, 4, 5, 9 | rngmneg1 20119 | . 2 ⊢ (𝜑 → ((𝑁‘𝑋) · (𝑁‘𝑌)) = (𝑁‘(𝑋 · (𝑁‘𝑌)))) |
11 | 1, 2, 3, 4, 5, 8 | rngmneg2 20120 | . . 3 ⊢ (𝜑 → (𝑋 · (𝑁‘𝑌)) = (𝑁‘(𝑋 · 𝑌))) |
12 | 11 | fveq2d 6900 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 · (𝑁‘𝑌))) = (𝑁‘(𝑁‘(𝑋 · 𝑌)))) |
13 | 1, 2 | rngcl 20116 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
14 | 4, 5, 8, 13 | syl3anc 1368 | . . 3 ⊢ (𝜑 → (𝑋 · 𝑌) ∈ 𝐵) |
15 | 1, 3 | grpinvinv 18970 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (𝑋 · 𝑌) ∈ 𝐵) → (𝑁‘(𝑁‘(𝑋 · 𝑌))) = (𝑋 · 𝑌)) |
16 | 7, 14, 15 | syl2anc 582 | . 2 ⊢ (𝜑 → (𝑁‘(𝑁‘(𝑋 · 𝑌))) = (𝑋 · 𝑌)) |
17 | 10, 12, 16 | 3eqtrd 2769 | 1 ⊢ (𝜑 → ((𝑁‘𝑋) · (𝑁‘𝑌)) = (𝑋 · 𝑌)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ‘cfv 6549 (class class class)co 7419 Basecbs 17183 .rcmulr 17237 Grpcgrp 18898 invgcminusg 18899 Rngcrng 20104 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-plusg 17249 df-0g 17426 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-grp 18901 df-minusg 18902 df-abl 19750 df-mgp 20087 df-rng 20105 |
This theorem is referenced by: ringm2neg 20254 |
Copyright terms: Public domain | W3C validator |