Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngocl | Structured version Visualization version GIF version |
Description: Closure of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ringi.1 | ⊢ 𝐺 = (1st ‘𝑅) |
ringi.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
ringi.3 | ⊢ 𝑋 = ran 𝐺 |
Ref | Expression |
---|---|
rngocl | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ringi.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | ringi.2 | . . 3 ⊢ 𝐻 = (2nd ‘𝑅) | |
3 | ringi.3 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
4 | 1, 2, 3 | rngosm 36037 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐻:(𝑋 × 𝑋)⟶𝑋) |
5 | fovrn 7433 | . 2 ⊢ ((𝐻:(𝑋 × 𝑋)⟶𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) | |
6 | 4, 5 | syl3an1 1161 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 × cxp 5586 ran crn 5589 ⟶wf 6426 ‘cfv 6430 (class class class)co 7268 1st c1st 7815 2nd c2nd 7816 RingOpscrngo 36031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-fv 6438 df-ov 7271 df-1st 7817 df-2nd 7818 df-rngo 36032 |
This theorem is referenced by: rngolz 36059 rngorz 36060 rngonegmn1l 36078 rngonegmn1r 36079 rngoneglmul 36080 rngonegrmul 36081 rngosubdi 36082 rngosubdir 36083 isdrngo2 36095 rngohomco 36111 rngoisocnv 36118 crngm4 36140 rngoidl 36161 keridl 36169 prnc 36204 ispridlc 36207 pridlc3 36210 dmncan1 36213 |
Copyright terms: Public domain | W3C validator |