Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngocl Structured version   Visualization version   GIF version

Theorem rngocl 37949
Description: Closure of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringi.1 𝐺 = (1st𝑅)
ringi.2 𝐻 = (2nd𝑅)
ringi.3 𝑋 = ran 𝐺
Assertion
Ref Expression
rngocl ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)

Proof of Theorem rngocl
StepHypRef Expression
1 ringi.1 . . 3 𝐺 = (1st𝑅)
2 ringi.2 . . 3 𝐻 = (2nd𝑅)
3 ringi.3 . . 3 𝑋 = ran 𝐺
41, 2, 3rngosm 37948 . 2 (𝑅 ∈ RingOps → 𝐻:(𝑋 × 𝑋)⟶𝑋)
5 fovcdm 7516 . 2 ((𝐻:(𝑋 × 𝑋)⟶𝑋𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
64, 5syl3an1 1163 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1541  wcel 2111   × cxp 5612  ran crn 5615  wf 6477  cfv 6481  (class class class)co 7346  1st c1st 7919  2nd c2nd 7920  RingOpscrngo 37942
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-ov 7349  df-1st 7921  df-2nd 7922  df-rngo 37943
This theorem is referenced by:  rngolz  37970  rngorz  37971  rngonegmn1l  37989  rngonegmn1r  37990  rngoneglmul  37991  rngonegrmul  37992  rngosubdi  37993  rngosubdir  37994  isdrngo2  38006  rngohomco  38022  rngoisocnv  38029  crngm4  38051  rngoidl  38072  keridl  38080  prnc  38115  ispridlc  38118  pridlc3  38121  dmncan1  38124
  Copyright terms: Public domain W3C validator