Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngocl Structured version   Visualization version   GIF version

Theorem rngocl 37895
Description: Closure of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringi.1 𝐺 = (1st𝑅)
ringi.2 𝐻 = (2nd𝑅)
ringi.3 𝑋 = ran 𝐺
Assertion
Ref Expression
rngocl ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)

Proof of Theorem rngocl
StepHypRef Expression
1 ringi.1 . . 3 𝐺 = (1st𝑅)
2 ringi.2 . . 3 𝐻 = (2nd𝑅)
3 ringi.3 . . 3 𝑋 = ran 𝐺
41, 2, 3rngosm 37894 . 2 (𝑅 ∈ RingOps → 𝐻:(𝑋 × 𝑋)⟶𝑋)
5 fovcdm 7559 . 2 ((𝐻:(𝑋 × 𝑋)⟶𝑋𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
64, 5syl3an1 1163 1 ((𝑅 ∈ RingOps ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐻𝐵) ∈ 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109   × cxp 5636  ran crn 5639  wf 6507  cfv 6511  (class class class)co 7387  1st c1st 7966  2nd c2nd 7967  RingOpscrngo 37888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-fv 6519  df-ov 7390  df-1st 7968  df-2nd 7969  df-rngo 37889
This theorem is referenced by:  rngolz  37916  rngorz  37917  rngonegmn1l  37935  rngonegmn1r  37936  rngoneglmul  37937  rngonegrmul  37938  rngosubdi  37939  rngosubdir  37940  isdrngo2  37952  rngohomco  37968  rngoisocnv  37975  crngm4  37997  rngoidl  38018  keridl  38026  prnc  38061  ispridlc  38064  pridlc3  38067  dmncan1  38070
  Copyright terms: Public domain W3C validator