| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngocl | Structured version Visualization version GIF version | ||
| Description: Closure of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ringi.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| ringi.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| ringi.3 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| rngocl | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringi.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | ringi.2 | . . 3 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 3 | ringi.3 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 4 | 1, 2, 3 | rngosm 37880 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐻:(𝑋 × 𝑋)⟶𝑋) |
| 5 | fovcdm 7519 | . 2 ⊢ ((𝐻:(𝑋 × 𝑋)⟶𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) | |
| 6 | 4, 5 | syl3an1 1163 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 × cxp 5617 ran crn 5620 ⟶wf 6478 ‘cfv 6482 (class class class)co 7349 1st c1st 7922 2nd c2nd 7923 RingOpscrngo 37874 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-fv 6490 df-ov 7352 df-1st 7924 df-2nd 7925 df-rngo 37875 |
| This theorem is referenced by: rngolz 37902 rngorz 37903 rngonegmn1l 37921 rngonegmn1r 37922 rngoneglmul 37923 rngonegrmul 37924 rngosubdi 37925 rngosubdir 37926 isdrngo2 37938 rngohomco 37954 rngoisocnv 37961 crngm4 37983 rngoidl 38004 keridl 38012 prnc 38047 ispridlc 38050 pridlc3 38053 dmncan1 38056 |
| Copyright terms: Public domain | W3C validator |