| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngocl | Structured version Visualization version GIF version | ||
| Description: Closure of the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ringi.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| ringi.2 | ⊢ 𝐻 = (2nd ‘𝑅) |
| ringi.3 | ⊢ 𝑋 = ran 𝐺 |
| Ref | Expression |
|---|---|
| rngocl | ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringi.1 | . . 3 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | ringi.2 | . . 3 ⊢ 𝐻 = (2nd ‘𝑅) | |
| 3 | ringi.3 | . . 3 ⊢ 𝑋 = ran 𝐺 | |
| 4 | 1, 2, 3 | rngosm 37924 | . 2 ⊢ (𝑅 ∈ RingOps → 𝐻:(𝑋 × 𝑋)⟶𝑋) |
| 5 | fovcdm 7577 | . 2 ⊢ ((𝐻:(𝑋 × 𝑋)⟶𝑋 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) | |
| 6 | 4, 5 | syl3an1 1163 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴𝐻𝐵) ∈ 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 × cxp 5652 ran crn 5655 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 1st c1st 7986 2nd c2nd 7987 RingOpscrngo 37918 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ov 7408 df-1st 7988 df-2nd 7989 df-rngo 37919 |
| This theorem is referenced by: rngolz 37946 rngorz 37947 rngonegmn1l 37965 rngonegmn1r 37966 rngoneglmul 37967 rngonegrmul 37968 rngosubdi 37969 rngosubdir 37970 isdrngo2 37982 rngohomco 37998 rngoisocnv 38005 crngm4 38027 rngoidl 38048 keridl 38056 prnc 38091 ispridlc 38094 pridlc3 38097 dmncan1 38100 |
| Copyright terms: Public domain | W3C validator |