Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suprnmpt Structured version   Visualization version   GIF version

Theorem suprnmpt 43855
Description: An explicit bound for the range of a bounded function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
suprnmpt.a (𝜑𝐴 ≠ ∅)
suprnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
suprnmpt.bnd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
suprnmpt.f 𝐹 = (𝑥𝐴𝐵)
suprnmpt.c 𝐶 = sup(ran 𝐹, ℝ, < )
Assertion
Ref Expression
suprnmpt (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐹   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥)

Proof of Theorem suprnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 suprnmpt.c . . 3 𝐶 = sup(ran 𝐹, ℝ, < )
2 suprnmpt.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
32ralrimiva 3146 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
4 suprnmpt.f . . . . . 6 𝐹 = (𝑥𝐴𝐵)
54rnmptss 7118 . . . . 5 (∀𝑥𝐴 𝐵 ∈ ℝ → ran 𝐹 ⊆ ℝ)
63, 5syl 17 . . . 4 (𝜑 → ran 𝐹 ⊆ ℝ)
7 nfv 1917 . . . . 5 𝑥𝜑
8 suprnmpt.a . . . . 5 (𝜑𝐴 ≠ ∅)
97, 2, 4, 8rnmptn0 6240 . . . 4 (𝜑 → ran 𝐹 ≠ ∅)
10 suprnmpt.bnd . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
11 nfv 1917 . . . . . 6 𝑦𝜑
12 nfre1 3282 . . . . . 6 𝑦𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦
13 simp2 1137 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → 𝑦 ∈ ℝ)
14 simpl1 1191 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran 𝐹) → 𝜑)
15 simpl3 1193 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran 𝐹) → ∀𝑥𝐴 𝐵𝑦)
16 vex 3478 . . . . . . . . . . . . . 14 𝑧 ∈ V
174elrnmpt 5953 . . . . . . . . . . . . . 14 (𝑧 ∈ V → (𝑧 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝑧 = 𝐵))
1816, 17ax-mp 5 . . . . . . . . . . . . 13 (𝑧 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝑧 = 𝐵)
1918biimpi 215 . . . . . . . . . . . 12 (𝑧 ∈ ran 𝐹 → ∃𝑥𝐴 𝑧 = 𝐵)
2019adantl 482 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran 𝐹) → ∃𝑥𝐴 𝑧 = 𝐵)
21 simp3 1138 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → ∃𝑥𝐴 𝑧 = 𝐵)
22 nfra1 3281 . . . . . . . . . . . . . 14 𝑥𝑥𝐴 𝐵𝑦
23 nfre1 3282 . . . . . . . . . . . . . 14 𝑥𝑥𝐴 𝑧 = 𝐵
247, 22, 23nf3an 1904 . . . . . . . . . . . . 13 𝑥(𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵)
25 nfv 1917 . . . . . . . . . . . . 13 𝑥 𝑧𝑦
26 simp3 1138 . . . . . . . . . . . . . . . 16 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝑧 = 𝐵)
27 rspa 3245 . . . . . . . . . . . . . . . . 17 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴) → 𝐵𝑦)
28273adant3 1132 . . . . . . . . . . . . . . . 16 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝐵𝑦)
2926, 28eqbrtrd 5169 . . . . . . . . . . . . . . 15 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝑧𝑦)
30293exp 1119 . . . . . . . . . . . . . 14 (∀𝑥𝐴 𝐵𝑦 → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝑦)))
31303ad2ant2 1134 . . . . . . . . . . . . 13 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝑦)))
3224, 25, 31rexlimd 3263 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → (∃𝑥𝐴 𝑧 = 𝐵𝑧𝑦))
3321, 32mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑧𝑦)
3414, 15, 20, 33syl3anc 1371 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran 𝐹) → 𝑧𝑦)
3534ralrimiva 3146 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∀𝑧 ∈ ran 𝐹 𝑧𝑦)
36 19.8a 2174 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧𝑦) → ∃𝑦(𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧𝑦))
3713, 35, 36syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∃𝑦(𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧𝑦))
38 df-rex 3071 . . . . . . . 8 (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦 ↔ ∃𝑦(𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧𝑦))
3937, 38sylibr 233 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦)
40393exp 1119 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ → (∀𝑥𝐴 𝐵𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦)))
4111, 12, 40rexlimd 3263 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦))
4210, 41mpd 15 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦)
43 suprcl 12170 . . . 4 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
446, 9, 42, 43syl3anc 1371 . . 3 (𝜑 → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
451, 44eqeltrid 2837 . 2 (𝜑𝐶 ∈ ℝ)
466adantr 481 . . . . 5 ((𝜑𝑥𝐴) → ran 𝐹 ⊆ ℝ)
47 simpr 485 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
484elrnmpt1 5955 . . . . . . 7 ((𝑥𝐴𝐵 ∈ ℝ) → 𝐵 ∈ ran 𝐹)
4947, 2, 48syl2anc 584 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ran 𝐹)
5049ne0d 4334 . . . . 5 ((𝜑𝑥𝐴) → ran 𝐹 ≠ ∅)
5142adantr 481 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦)
52 suprub 12171 . . . . 5 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦) ∧ 𝐵 ∈ ran 𝐹) → 𝐵 ≤ sup(ran 𝐹, ℝ, < ))
5346, 50, 51, 49, 52syl31anc 1373 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ≤ sup(ran 𝐹, ℝ, < ))
5453, 1breqtrrdi 5189 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
5554ralrimiva 3146 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
5645, 55jca 512 1 (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wne 2940  wral 3061  wrex 3070  Vcvv 3474  wss 3947  c0 4321   class class class wbr 5147  cmpt 5230  ran crn 5676  supcsup 9431  cr 11105   < clt 11244  cle 11245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-po 5587  df-so 5588  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443
This theorem is referenced by:  ioodvbdlimc1lem1  44633  ioodvbdlimc1lem2  44634  ioodvbdlimc2lem  44636
  Copyright terms: Public domain W3C validator