Step | Hyp | Ref
| Expression |
1 | | suprnmpt.c |
. . 3
⊢ 𝐶 = sup(ran 𝐹, ℝ, < ) |
2 | | suprnmpt.b |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
3 | 2 | ralrimiva 3107 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ∈ ℝ) |
4 | | suprnmpt.f |
. . . . . 6
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
5 | 4 | rnmptss 6978 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 𝐵 ∈ ℝ → ran 𝐹 ⊆ ℝ) |
6 | 3, 5 | syl 17 |
. . . 4
⊢ (𝜑 → ran 𝐹 ⊆ ℝ) |
7 | | nfv 1918 |
. . . . 5
⊢
Ⅎ𝑥𝜑 |
8 | | suprnmpt.a |
. . . . 5
⊢ (𝜑 → 𝐴 ≠ ∅) |
9 | 7, 2, 4, 8 | rnmptn0 6136 |
. . . 4
⊢ (𝜑 → ran 𝐹 ≠ ∅) |
10 | | suprnmpt.bnd |
. . . . 5
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
11 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑦𝜑 |
12 | | nfre1 3234 |
. . . . . 6
⊢
Ⅎ𝑦∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦 |
13 | | simp2 1135 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → 𝑦 ∈ ℝ) |
14 | | simpl1 1189 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑧 ∈ ran 𝐹) → 𝜑) |
15 | | simpl3 1191 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑧 ∈ ran 𝐹) → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) |
16 | | vex 3426 |
. . . . . . . . . . . . . 14
⊢ 𝑧 ∈ V |
17 | 4 | elrnmpt 5854 |
. . . . . . . . . . . . . 14
⊢ (𝑧 ∈ V → (𝑧 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
18 | 16, 17 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
19 | 18 | biimpi 215 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ ran 𝐹 → ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
20 | 19 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑧 ∈ ran 𝐹) → ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
21 | | simp3 1136 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) → ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
22 | | nfra1 3142 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 |
23 | | nfre1 3234 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐴 𝑧 = 𝐵 |
24 | 7, 22, 23 | nf3an 1905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥(𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) |
25 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑥 𝑧 ≤ 𝑦 |
26 | | simp3 1136 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑥 ∈
𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝑧 = 𝐵) |
27 | | rspa 3130 |
. . . . . . . . . . . . . . . . 17
⊢
((∀𝑥 ∈
𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝑦) |
28 | 27 | 3adant3 1130 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑥 ∈
𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝐵 ≤ 𝑦) |
29 | 26, 28 | eqbrtrd 5092 |
. . . . . . . . . . . . . . 15
⊢
((∀𝑥 ∈
𝐴 𝐵 ≤ 𝑦 ∧ 𝑥 ∈ 𝐴 ∧ 𝑧 = 𝐵) → 𝑧 ≤ 𝑦) |
30 | 29 | 3exp 1117 |
. . . . . . . . . . . . . 14
⊢
(∀𝑥 ∈
𝐴 𝐵 ≤ 𝑦 → (𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑧 ≤ 𝑦))) |
31 | 30 | 3ad2ant2 1132 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) → (𝑥 ∈ 𝐴 → (𝑧 = 𝐵 → 𝑧 ≤ 𝑦))) |
32 | 24, 25, 31 | rexlimd 3245 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) → (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ≤ 𝑦)) |
33 | 21, 32 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 ∧ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵) → 𝑧 ≤ 𝑦) |
34 | 14, 15, 20, 33 | syl3anc 1369 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) ∧ 𝑧 ∈ ran 𝐹) → 𝑧 ≤ 𝑦) |
35 | 34 | ralrimiva 3107 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → ∀𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦) |
36 | | 19.8a 2176 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ ∧
∀𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦) → ∃𝑦(𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦)) |
37 | 13, 35, 36 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → ∃𝑦(𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦)) |
38 | | df-rex 3069 |
. . . . . . . 8
⊢
(∃𝑦 ∈
ℝ ∀𝑧 ∈
ran 𝐹 𝑧 ≤ 𝑦 ↔ ∃𝑦(𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦)) |
39 | 37, 38 | sylibr 233 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑦 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦) |
40 | 39 | 3exp 1117 |
. . . . . 6
⊢ (𝜑 → (𝑦 ∈ ℝ → (∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦))) |
41 | 11, 12, 40 | rexlimd 3245 |
. . . . 5
⊢ (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦)) |
42 | 10, 41 | mpd 15 |
. . . 4
⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦) |
43 | | suprcl 11865 |
. . . 4
⊢ ((ran
𝐹 ⊆ ℝ ∧ ran
𝐹 ≠ ∅ ∧
∃𝑦 ∈ ℝ
∀𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦) → sup(ran 𝐹, ℝ, < ) ∈
ℝ) |
44 | 6, 9, 42, 43 | syl3anc 1369 |
. . 3
⊢ (𝜑 → sup(ran 𝐹, ℝ, < ) ∈
ℝ) |
45 | 1, 44 | eqeltrid 2843 |
. 2
⊢ (𝜑 → 𝐶 ∈ ℝ) |
46 | 6 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ran 𝐹 ⊆ ℝ) |
47 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
48 | 4 | elrnmpt1 5856 |
. . . . . . 7
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐵 ∈ ℝ) → 𝐵 ∈ ran 𝐹) |
49 | 47, 2, 48 | syl2anc 583 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran 𝐹) |
50 | 49 | ne0d 4266 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ran 𝐹 ≠ ∅) |
51 | 42 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦) |
52 | | suprub 11866 |
. . . . 5
⊢ (((ran
𝐹 ⊆ ℝ ∧ ran
𝐹 ≠ ∅ ∧
∃𝑦 ∈ ℝ
∀𝑧 ∈ ran 𝐹 𝑧 ≤ 𝑦) ∧ 𝐵 ∈ ran 𝐹) → 𝐵 ≤ sup(ran 𝐹, ℝ, < )) |
53 | 46, 50, 51, 49, 52 | syl31anc 1371 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ sup(ran 𝐹, ℝ, < )) |
54 | 53, 1 | breqtrrdi 5112 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≤ 𝐶) |
55 | 54 | ralrimiva 3107 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶) |
56 | 45, 55 | jca 511 |
1
⊢ (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) |