Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suprnmpt Structured version   Visualization version   GIF version

Theorem suprnmpt 41661
 Description: An explicit bound for the range of a bounded function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
suprnmpt.a (𝜑𝐴 ≠ ∅)
suprnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
suprnmpt.bnd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
suprnmpt.f 𝐹 = (𝑥𝐴𝐵)
suprnmpt.c 𝐶 = sup(ran 𝐹, ℝ, < )
Assertion
Ref Expression
suprnmpt (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐹   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥)

Proof of Theorem suprnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 suprnmpt.c . . 3 𝐶 = sup(ran 𝐹, ℝ, < )
2 suprnmpt.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
32ralrimiva 3177 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
4 suprnmpt.f . . . . . 6 𝐹 = (𝑥𝐴𝐵)
54rnmptss 6875 . . . . 5 (∀𝑥𝐴 𝐵 ∈ ℝ → ran 𝐹 ⊆ ℝ)
63, 5syl 17 . . . 4 (𝜑 → ran 𝐹 ⊆ ℝ)
7 nfv 1916 . . . . 5 𝑥𝜑
8 nfmpt1 5151 . . . . . . . 8 𝑥(𝑥𝐴𝐵)
94, 8nfcxfr 2980 . . . . . . 7 𝑥𝐹
109nfrn 5812 . . . . . 6 𝑥ran 𝐹
11 nfcv 2982 . . . . . 6 𝑥
1210, 11nfne 3114 . . . . 5 𝑥ran 𝐹 ≠ ∅
13 suprnmpt.a . . . . . 6 (𝜑𝐴 ≠ ∅)
14 n0 4293 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
1513, 14sylib 221 . . . . 5 (𝜑 → ∃𝑥 𝑥𝐴)
16 simpr 488 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
174elrnmpt1 5818 . . . . . . 7 ((𝑥𝐴𝐵 ∈ ℝ) → 𝐵 ∈ ran 𝐹)
1816, 2, 17syl2anc 587 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ran 𝐹)
1918ne0d 4284 . . . . 5 ((𝜑𝑥𝐴) → ran 𝐹 ≠ ∅)
207, 12, 15, 19exlimdd 2222 . . . 4 (𝜑 → ran 𝐹 ≠ ∅)
21 suprnmpt.bnd . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
22 nfv 1916 . . . . . 6 𝑦𝜑
23 nfre1 3299 . . . . . 6 𝑦𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦
24 simp2 1134 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → 𝑦 ∈ ℝ)
25 simpl1 1188 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran 𝐹) → 𝜑)
26 simpl3 1190 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran 𝐹) → ∀𝑥𝐴 𝐵𝑦)
27 vex 3483 . . . . . . . . . . . . . 14 𝑧 ∈ V
284elrnmpt 5816 . . . . . . . . . . . . . 14 (𝑧 ∈ V → (𝑧 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝑧 = 𝐵))
2927, 28ax-mp 5 . . . . . . . . . . . . 13 (𝑧 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝑧 = 𝐵)
3029biimpi 219 . . . . . . . . . . . 12 (𝑧 ∈ ran 𝐹 → ∃𝑥𝐴 𝑧 = 𝐵)
3130adantl 485 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran 𝐹) → ∃𝑥𝐴 𝑧 = 𝐵)
32 simp3 1135 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → ∃𝑥𝐴 𝑧 = 𝐵)
33 nfra1 3214 . . . . . . . . . . . . . 14 𝑥𝑥𝐴 𝐵𝑦
34 nfre1 3299 . . . . . . . . . . . . . 14 𝑥𝑥𝐴 𝑧 = 𝐵
357, 33, 34nf3an 1903 . . . . . . . . . . . . 13 𝑥(𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵)
36 nfv 1916 . . . . . . . . . . . . 13 𝑥 𝑧𝑦
37 simp3 1135 . . . . . . . . . . . . . . . 16 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝑧 = 𝐵)
38 rspa 3201 . . . . . . . . . . . . . . . . 17 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴) → 𝐵𝑦)
39383adant3 1129 . . . . . . . . . . . . . . . 16 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝐵𝑦)
4037, 39eqbrtrd 5075 . . . . . . . . . . . . . . 15 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝑧𝑦)
41403exp 1116 . . . . . . . . . . . . . 14 (∀𝑥𝐴 𝐵𝑦 → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝑦)))
42413ad2ant2 1131 . . . . . . . . . . . . 13 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝑦)))
4335, 36, 42rexlimd 3310 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → (∃𝑥𝐴 𝑧 = 𝐵𝑧𝑦))
4432, 43mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑧𝑦)
4525, 26, 31, 44syl3anc 1368 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran 𝐹) → 𝑧𝑦)
4645ralrimiva 3177 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∀𝑧 ∈ ran 𝐹 𝑧𝑦)
47 19.8a 2182 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧𝑦) → ∃𝑦(𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧𝑦))
4824, 46, 47syl2anc 587 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∃𝑦(𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧𝑦))
49 df-rex 3139 . . . . . . . 8 (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦 ↔ ∃𝑦(𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧𝑦))
5048, 49sylibr 237 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦)
51503exp 1116 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ → (∀𝑥𝐴 𝐵𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦)))
5222, 23, 51rexlimd 3310 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦))
5321, 52mpd 15 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦)
54 suprcl 11595 . . . 4 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
556, 20, 53, 54syl3anc 1368 . . 3 (𝜑 → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
561, 55eqeltrid 2920 . 2 (𝜑𝐶 ∈ ℝ)
576adantr 484 . . . . 5 ((𝜑𝑥𝐴) → ran 𝐹 ⊆ ℝ)
5853adantr 484 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦)
59 suprub 11596 . . . . 5 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦) ∧ 𝐵 ∈ ran 𝐹) → 𝐵 ≤ sup(ran 𝐹, ℝ, < ))
6057, 19, 58, 18, 59syl31anc 1370 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ≤ sup(ran 𝐹, ℝ, < ))
6160, 1breqtrrdi 5095 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
6261ralrimiva 3177 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
6356, 62jca 515 1 (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538  ∃wex 1781   ∈ wcel 2115   ≠ wne 3014  ∀wral 3133  ∃wrex 3134  Vcvv 3480   ⊆ wss 3919  ∅c0 4276   class class class wbr 5053   ↦ cmpt 5133  ran crn 5544  supcsup 8897  ℝcr 10530   < clt 10669   ≤ cle 10670 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7452  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4826  df-br 5054  df-opab 5116  df-mpt 5134  df-id 5448  df-po 5462  df-so 5463  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-riota 7104  df-ov 7149  df-oprab 7150  df-mpo 7151  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-sup 8899  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867 This theorem is referenced by:  ioodvbdlimc1lem1  42439  ioodvbdlimc1lem2  42440  ioodvbdlimc2lem  42442
 Copyright terms: Public domain W3C validator