Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suprnmpt Structured version   Visualization version   GIF version

Theorem suprnmpt 45168
Description: An explicit bound for the range of a bounded function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
suprnmpt.a (𝜑𝐴 ≠ ∅)
suprnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
suprnmpt.bnd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
suprnmpt.f 𝐹 = (𝑥𝐴𝐵)
suprnmpt.c 𝐶 = sup(ran 𝐹, ℝ, < )
Assertion
Ref Expression
suprnmpt (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐹   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥)

Proof of Theorem suprnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 suprnmpt.c . . 3 𝐶 = sup(ran 𝐹, ℝ, < )
2 suprnmpt.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
32ralrimiva 3125 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
4 suprnmpt.f . . . . . 6 𝐹 = (𝑥𝐴𝐵)
54rnmptss 7095 . . . . 5 (∀𝑥𝐴 𝐵 ∈ ℝ → ran 𝐹 ⊆ ℝ)
63, 5syl 17 . . . 4 (𝜑 → ran 𝐹 ⊆ ℝ)
7 nfv 1914 . . . . 5 𝑥𝜑
8 suprnmpt.a . . . . 5 (𝜑𝐴 ≠ ∅)
97, 2, 4, 8rnmptn0 6217 . . . 4 (𝜑 → ran 𝐹 ≠ ∅)
10 suprnmpt.bnd . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
11 nfv 1914 . . . . . 6 𝑦𝜑
12 nfre1 3262 . . . . . 6 𝑦𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦
13 simp2 1137 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → 𝑦 ∈ ℝ)
14 simpl1 1192 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran 𝐹) → 𝜑)
15 simpl3 1194 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran 𝐹) → ∀𝑥𝐴 𝐵𝑦)
16 vex 3451 . . . . . . . . . . . . . 14 𝑧 ∈ V
174elrnmpt 5922 . . . . . . . . . . . . . 14 (𝑧 ∈ V → (𝑧 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝑧 = 𝐵))
1816, 17ax-mp 5 . . . . . . . . . . . . 13 (𝑧 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝑧 = 𝐵)
1918biimpi 216 . . . . . . . . . . . 12 (𝑧 ∈ ran 𝐹 → ∃𝑥𝐴 𝑧 = 𝐵)
2019adantl 481 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran 𝐹) → ∃𝑥𝐴 𝑧 = 𝐵)
21 simp3 1138 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → ∃𝑥𝐴 𝑧 = 𝐵)
22 nfra1 3261 . . . . . . . . . . . . . 14 𝑥𝑥𝐴 𝐵𝑦
23 nfre1 3262 . . . . . . . . . . . . . 14 𝑥𝑥𝐴 𝑧 = 𝐵
247, 22, 23nf3an 1901 . . . . . . . . . . . . 13 𝑥(𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵)
25 nfv 1914 . . . . . . . . . . . . 13 𝑥 𝑧𝑦
26 simp3 1138 . . . . . . . . . . . . . . . 16 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝑧 = 𝐵)
27 rspa 3226 . . . . . . . . . . . . . . . . 17 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴) → 𝐵𝑦)
28273adant3 1132 . . . . . . . . . . . . . . . 16 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝐵𝑦)
2926, 28eqbrtrd 5129 . . . . . . . . . . . . . . 15 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝑧𝑦)
30293exp 1119 . . . . . . . . . . . . . 14 (∀𝑥𝐴 𝐵𝑦 → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝑦)))
31303ad2ant2 1134 . . . . . . . . . . . . 13 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝑦)))
3224, 25, 31rexlimd 3244 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → (∃𝑥𝐴 𝑧 = 𝐵𝑧𝑦))
3321, 32mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑧𝑦)
3414, 15, 20, 33syl3anc 1373 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran 𝐹) → 𝑧𝑦)
3534ralrimiva 3125 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∀𝑧 ∈ ran 𝐹 𝑧𝑦)
36 19.8a 2182 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧𝑦) → ∃𝑦(𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧𝑦))
3713, 35, 36syl2anc 584 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∃𝑦(𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧𝑦))
38 df-rex 3054 . . . . . . . 8 (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦 ↔ ∃𝑦(𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧𝑦))
3937, 38sylibr 234 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦)
40393exp 1119 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ → (∀𝑥𝐴 𝐵𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦)))
4111, 12, 40rexlimd 3244 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦))
4210, 41mpd 15 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦)
43 suprcl 12143 . . . 4 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
446, 9, 42, 43syl3anc 1373 . . 3 (𝜑 → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
451, 44eqeltrid 2832 . 2 (𝜑𝐶 ∈ ℝ)
466adantr 480 . . . . 5 ((𝜑𝑥𝐴) → ran 𝐹 ⊆ ℝ)
47 simpr 484 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
484elrnmpt1 5924 . . . . . . 7 ((𝑥𝐴𝐵 ∈ ℝ) → 𝐵 ∈ ran 𝐹)
4947, 2, 48syl2anc 584 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ran 𝐹)
5049ne0d 4305 . . . . 5 ((𝜑𝑥𝐴) → ran 𝐹 ≠ ∅)
5142adantr 480 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦)
52 suprub 12144 . . . . 5 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦) ∧ 𝐵 ∈ ran 𝐹) → 𝐵 ≤ sup(ran 𝐹, ℝ, < ))
5346, 50, 51, 49, 52syl31anc 1375 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ≤ sup(ran 𝐹, ℝ, < ))
5453, 1breqtrrdi 5149 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
5554ralrimiva 3125 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
5645, 55jca 511 1 (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  Vcvv 3447  wss 3914  c0 4296   class class class wbr 5107  cmpt 5188  ran crn 5639  supcsup 9391  cr 11067   < clt 11208  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-po 5546  df-so 5547  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408
This theorem is referenced by:  ioodvbdlimc1lem1  45929  ioodvbdlimc1lem2  45930  ioodvbdlimc2lem  45932
  Copyright terms: Public domain W3C validator