Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suprnmpt Structured version   Visualization version   GIF version

Theorem suprnmpt 41798
Description: An explicit bound for the range of a bounded function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
suprnmpt.a (𝜑𝐴 ≠ ∅)
suprnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
suprnmpt.bnd (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
suprnmpt.f 𝐹 = (𝑥𝐴𝐵)
suprnmpt.c 𝐶 = sup(ran 𝐹, ℝ, < )
Assertion
Ref Expression
suprnmpt (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐹   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥)

Proof of Theorem suprnmpt
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 suprnmpt.c . . 3 𝐶 = sup(ran 𝐹, ℝ, < )
2 suprnmpt.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
32ralrimiva 3149 . . . . 5 (𝜑 → ∀𝑥𝐴 𝐵 ∈ ℝ)
4 suprnmpt.f . . . . . 6 𝐹 = (𝑥𝐴𝐵)
54rnmptss 6863 . . . . 5 (∀𝑥𝐴 𝐵 ∈ ℝ → ran 𝐹 ⊆ ℝ)
63, 5syl 17 . . . 4 (𝜑 → ran 𝐹 ⊆ ℝ)
7 nfv 1915 . . . . 5 𝑥𝜑
8 nfmpt1 5128 . . . . . . . 8 𝑥(𝑥𝐴𝐵)
94, 8nfcxfr 2953 . . . . . . 7 𝑥𝐹
109nfrn 5788 . . . . . 6 𝑥ran 𝐹
11 nfcv 2955 . . . . . 6 𝑥
1210, 11nfne 3087 . . . . 5 𝑥ran 𝐹 ≠ ∅
13 suprnmpt.a . . . . . 6 (𝜑𝐴 ≠ ∅)
14 n0 4260 . . . . . 6 (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥𝐴)
1513, 14sylib 221 . . . . 5 (𝜑 → ∃𝑥 𝑥𝐴)
16 simpr 488 . . . . . . 7 ((𝜑𝑥𝐴) → 𝑥𝐴)
174elrnmpt1 5794 . . . . . . 7 ((𝑥𝐴𝐵 ∈ ℝ) → 𝐵 ∈ ran 𝐹)
1816, 2, 17syl2anc 587 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ran 𝐹)
1918ne0d 4251 . . . . 5 ((𝜑𝑥𝐴) → ran 𝐹 ≠ ∅)
207, 12, 15, 19exlimdd 2218 . . . 4 (𝜑 → ran 𝐹 ≠ ∅)
21 suprnmpt.bnd . . . . 5 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦)
22 nfv 1915 . . . . . 6 𝑦𝜑
23 nfre1 3265 . . . . . 6 𝑦𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦
24 simp2 1134 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → 𝑦 ∈ ℝ)
25 simpl1 1188 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran 𝐹) → 𝜑)
26 simpl3 1190 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran 𝐹) → ∀𝑥𝐴 𝐵𝑦)
27 vex 3444 . . . . . . . . . . . . . 14 𝑧 ∈ V
284elrnmpt 5792 . . . . . . . . . . . . . 14 (𝑧 ∈ V → (𝑧 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝑧 = 𝐵))
2927, 28ax-mp 5 . . . . . . . . . . . . 13 (𝑧 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝑧 = 𝐵)
3029biimpi 219 . . . . . . . . . . . 12 (𝑧 ∈ ran 𝐹 → ∃𝑥𝐴 𝑧 = 𝐵)
3130adantl 485 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran 𝐹) → ∃𝑥𝐴 𝑧 = 𝐵)
32 simp3 1135 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → ∃𝑥𝐴 𝑧 = 𝐵)
33 nfra1 3183 . . . . . . . . . . . . . 14 𝑥𝑥𝐴 𝐵𝑦
34 nfre1 3265 . . . . . . . . . . . . . 14 𝑥𝑥𝐴 𝑧 = 𝐵
357, 33, 34nf3an 1902 . . . . . . . . . . . . 13 𝑥(𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵)
36 nfv 1915 . . . . . . . . . . . . 13 𝑥 𝑧𝑦
37 simp3 1135 . . . . . . . . . . . . . . . 16 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝑧 = 𝐵)
38 rspa 3171 . . . . . . . . . . . . . . . . 17 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴) → 𝐵𝑦)
39383adant3 1129 . . . . . . . . . . . . . . . 16 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝐵𝑦)
4037, 39eqbrtrd 5052 . . . . . . . . . . . . . . 15 ((∀𝑥𝐴 𝐵𝑦𝑥𝐴𝑧 = 𝐵) → 𝑧𝑦)
41403exp 1116 . . . . . . . . . . . . . 14 (∀𝑥𝐴 𝐵𝑦 → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝑦)))
42413ad2ant2 1131 . . . . . . . . . . . . 13 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → (𝑥𝐴 → (𝑧 = 𝐵𝑧𝑦)))
4335, 36, 42rexlimd 3276 . . . . . . . . . . . 12 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → (∃𝑥𝐴 𝑧 = 𝐵𝑧𝑦))
4432, 43mpd 15 . . . . . . . . . . 11 ((𝜑 ∧ ∀𝑥𝐴 𝐵𝑦 ∧ ∃𝑥𝐴 𝑧 = 𝐵) → 𝑧𝑦)
4525, 26, 31, 44syl3anc 1368 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) ∧ 𝑧 ∈ ran 𝐹) → 𝑧𝑦)
4645ralrimiva 3149 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∀𝑧 ∈ ran 𝐹 𝑧𝑦)
47 19.8a 2178 . . . . . . . . 9 ((𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧𝑦) → ∃𝑦(𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧𝑦))
4824, 46, 47syl2anc 587 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∃𝑦(𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧𝑦))
49 df-rex 3112 . . . . . . . 8 (∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦 ↔ ∃𝑦(𝑦 ∈ ℝ ∧ ∀𝑧 ∈ ran 𝐹 𝑧𝑦))
5048, 49sylibr 237 . . . . . . 7 ((𝜑𝑦 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝑦) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦)
51503exp 1116 . . . . . 6 (𝜑 → (𝑦 ∈ ℝ → (∀𝑥𝐴 𝐵𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦)))
5222, 23, 51rexlimd 3276 . . . . 5 (𝜑 → (∃𝑦 ∈ ℝ ∀𝑥𝐴 𝐵𝑦 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦))
5321, 52mpd 15 . . . 4 (𝜑 → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦)
54 suprcl 11588 . . . 4 ((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦) → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
556, 20, 53, 54syl3anc 1368 . . 3 (𝜑 → sup(ran 𝐹, ℝ, < ) ∈ ℝ)
561, 55eqeltrid 2894 . 2 (𝜑𝐶 ∈ ℝ)
576adantr 484 . . . . 5 ((𝜑𝑥𝐴) → ran 𝐹 ⊆ ℝ)
5853adantr 484 . . . . 5 ((𝜑𝑥𝐴) → ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦)
59 suprub 11589 . . . . 5 (((ran 𝐹 ⊆ ℝ ∧ ran 𝐹 ≠ ∅ ∧ ∃𝑦 ∈ ℝ ∀𝑧 ∈ ran 𝐹 𝑧𝑦) ∧ 𝐵 ∈ ran 𝐹) → 𝐵 ≤ sup(ran 𝐹, ℝ, < ))
6057, 19, 58, 18, 59syl31anc 1370 . . . 4 ((𝜑𝑥𝐴) → 𝐵 ≤ sup(ran 𝐹, ℝ, < ))
6160, 1breqtrrdi 5072 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
6261ralrimiva 3149 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
6356, 62jca 515 1 (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥𝐴 𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wex 1781  wcel 2111  wne 2987  wral 3106  wrex 3107  Vcvv 3441  wss 3881  c0 4243   class class class wbr 5030  cmpt 5110  ran crn 5520  supcsup 8888  cr 10525   < clt 10664  cle 10665
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862
This theorem is referenced by:  ioodvbdlimc1lem1  42573  ioodvbdlimc1lem2  42574  ioodvbdlimc2lem  42576
  Copyright terms: Public domain W3C validator