| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmnunit | Structured version Visualization version GIF version | ||
| Description: A ring prime is not a unit. (Contributed by Thierry Arnoux, 18-May-2025.) |
| Ref | Expression |
|---|---|
| rprmdvds.2 | ⊢ 𝑃 = (RPrime‘𝑅) |
| rprmdvds.3 | ⊢ 𝑈 = (Unit‘𝑅) |
| rprmdvds.5 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| rprmdvds.6 | ⊢ (𝜑 → 𝑄 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| rprmnunit | ⊢ (𝜑 → ¬ 𝑄 ∈ 𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2732 | . 2 ⊢ (𝜑 → (𝑈 ∪ {(0g‘𝑅)}) = (𝑈 ∪ {(0g‘𝑅)})) | |
| 2 | rprmdvds.5 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 3 | rprmdvds.6 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝑃) | |
| 4 | rprmdvds.2 | . . . . 5 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 5 | 3, 4 | eleqtrdi 2841 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (RPrime‘𝑅)) |
| 6 | eqid 2731 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | rprmdvds.3 | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
| 8 | eqid 2731 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
| 9 | eqid 2731 | . . . . . 6 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
| 10 | eqid 2731 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 11 | 6, 7, 8, 9, 10 | isrprm 33474 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝑄 ∈ (RPrime‘𝑅) ↔ (𝑄 ∈ ((Base‘𝑅) ∖ (𝑈 ∪ {(0g‘𝑅)})) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑄(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦) → (𝑄(∥r‘𝑅)𝑥 ∨ 𝑄(∥r‘𝑅)𝑦))))) |
| 12 | 11 | simprbda 498 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑄 ∈ (RPrime‘𝑅)) → 𝑄 ∈ ((Base‘𝑅) ∖ (𝑈 ∪ {(0g‘𝑅)}))) |
| 13 | 2, 5, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑄 ∈ ((Base‘𝑅) ∖ (𝑈 ∪ {(0g‘𝑅)}))) |
| 14 | 13 | eldifbd 3910 | . 2 ⊢ (𝜑 → ¬ 𝑄 ∈ (𝑈 ∪ {(0g‘𝑅)})) |
| 15 | nelun 32485 | . . 3 ⊢ ((𝑈 ∪ {(0g‘𝑅)}) = (𝑈 ∪ {(0g‘𝑅)}) → (¬ 𝑄 ∈ (𝑈 ∪ {(0g‘𝑅)}) ↔ (¬ 𝑄 ∈ 𝑈 ∧ ¬ 𝑄 ∈ {(0g‘𝑅)}))) | |
| 16 | 15 | simprbda 498 | . 2 ⊢ (((𝑈 ∪ {(0g‘𝑅)}) = (𝑈 ∪ {(0g‘𝑅)}) ∧ ¬ 𝑄 ∈ (𝑈 ∪ {(0g‘𝑅)})) → ¬ 𝑄 ∈ 𝑈) |
| 17 | 1, 14, 16 | syl2anc 584 | 1 ⊢ (𝜑 → ¬ 𝑄 ∈ 𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∖ cdif 3894 ∪ cun 3895 {csn 4571 class class class wbr 5086 ‘cfv 6476 (class class class)co 7341 Basecbs 17115 .rcmulr 17157 0gc0g 17338 ∥rcdsr 20267 Unitcui 20268 RPrimecrpm 20345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-ov 7344 df-rprm 20346 |
| This theorem is referenced by: rsprprmprmidl 33479 rprmndvdsr1 33481 rprmirred 33488 1arithidom 33494 |
| Copyright terms: Public domain | W3C validator |