Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmnunit Structured version   Visualization version   GIF version

Theorem rprmnunit 33514
Description: A ring prime is not a unit. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmdvds.2 𝑃 = (RPrime‘𝑅)
rprmdvds.3 𝑈 = (Unit‘𝑅)
rprmdvds.5 (𝜑𝑅𝑉)
rprmdvds.6 (𝜑𝑄𝑃)
Assertion
Ref Expression
rprmnunit (𝜑 → ¬ 𝑄𝑈)

Proof of Theorem rprmnunit
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2741 . 2 (𝜑 → (𝑈 ∪ {(0g𝑅)}) = (𝑈 ∪ {(0g𝑅)}))
2 rprmdvds.5 . . . 4 (𝜑𝑅𝑉)
3 rprmdvds.6 . . . . 5 (𝜑𝑄𝑃)
4 rprmdvds.2 . . . . 5 𝑃 = (RPrime‘𝑅)
53, 4eleqtrdi 2854 . . . 4 (𝜑𝑄 ∈ (RPrime‘𝑅))
6 eqid 2740 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
7 rprmdvds.3 . . . . . 6 𝑈 = (Unit‘𝑅)
8 eqid 2740 . . . . . 6 (0g𝑅) = (0g𝑅)
9 eqid 2740 . . . . . 6 (∥r𝑅) = (∥r𝑅)
10 eqid 2740 . . . . . 6 (.r𝑅) = (.r𝑅)
116, 7, 8, 9, 10isrprm 33510 . . . . 5 (𝑅𝑉 → (𝑄 ∈ (RPrime‘𝑅) ↔ (𝑄 ∈ ((Base‘𝑅) ∖ (𝑈 ∪ {(0g𝑅)})) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑄(∥r𝑅)(𝑥(.r𝑅)𝑦) → (𝑄(∥r𝑅)𝑥𝑄(∥r𝑅)𝑦)))))
1211simprbda 498 . . . 4 ((𝑅𝑉𝑄 ∈ (RPrime‘𝑅)) → 𝑄 ∈ ((Base‘𝑅) ∖ (𝑈 ∪ {(0g𝑅)})))
132, 5, 12syl2anc 583 . . 3 (𝜑𝑄 ∈ ((Base‘𝑅) ∖ (𝑈 ∪ {(0g𝑅)})))
1413eldifbd 3989 . 2 (𝜑 → ¬ 𝑄 ∈ (𝑈 ∪ {(0g𝑅)}))
15 nelun 32542 . . 3 ((𝑈 ∪ {(0g𝑅)}) = (𝑈 ∪ {(0g𝑅)}) → (¬ 𝑄 ∈ (𝑈 ∪ {(0g𝑅)}) ↔ (¬ 𝑄𝑈 ∧ ¬ 𝑄 ∈ {(0g𝑅)})))
1615simprbda 498 . 2 (((𝑈 ∪ {(0g𝑅)}) = (𝑈 ∪ {(0g𝑅)}) ∧ ¬ 𝑄 ∈ (𝑈 ∪ {(0g𝑅)})) → ¬ 𝑄𝑈)
171, 14, 16syl2anc 583 1 (𝜑 → ¬ 𝑄𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 846   = wceq 1537  wcel 2108  wral 3067  cdif 3973  cun 3974  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  .rcmulr 17312  0gc0g 17499  rcdsr 20380  Unitcui 20381  RPrimecrpm 20458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-rprm 20459
This theorem is referenced by:  rsprprmprmidl  33515  rprmndvdsr1  33517  rprmirred  33524  1arithidom  33530
  Copyright terms: Public domain W3C validator