![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmnunit | Structured version Visualization version GIF version |
Description: A ring prime is not a unit. (Contributed by Thierry Arnoux, 18-May-2025.) |
Ref | Expression |
---|---|
rprmdvds.2 | ⊢ 𝑃 = (RPrime‘𝑅) |
rprmdvds.3 | ⊢ 𝑈 = (Unit‘𝑅) |
rprmdvds.5 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
rprmdvds.6 | ⊢ (𝜑 → 𝑄 ∈ 𝑃) |
Ref | Expression |
---|---|
rprmnunit | ⊢ (𝜑 → ¬ 𝑄 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2727 | . 2 ⊢ (𝜑 → (𝑈 ∪ {(0g‘𝑅)}) = (𝑈 ∪ {(0g‘𝑅)})) | |
2 | rprmdvds.5 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
3 | rprmdvds.6 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝑃) | |
4 | rprmdvds.2 | . . . . 5 ⊢ 𝑃 = (RPrime‘𝑅) | |
5 | 3, 4 | eleqtrdi 2836 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (RPrime‘𝑅)) |
6 | eqid 2726 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | rprmdvds.3 | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
8 | eqid 2726 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
9 | eqid 2726 | . . . . . 6 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
10 | eqid 2726 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
11 | 6, 7, 8, 9, 10 | isrprm 33392 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝑄 ∈ (RPrime‘𝑅) ↔ (𝑄 ∈ ((Base‘𝑅) ∖ (𝑈 ∪ {(0g‘𝑅)})) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑄(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦) → (𝑄(∥r‘𝑅)𝑥 ∨ 𝑄(∥r‘𝑅)𝑦))))) |
12 | 11 | simprbda 497 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑄 ∈ (RPrime‘𝑅)) → 𝑄 ∈ ((Base‘𝑅) ∖ (𝑈 ∪ {(0g‘𝑅)}))) |
13 | 2, 5, 12 | syl2anc 582 | . . 3 ⊢ (𝜑 → 𝑄 ∈ ((Base‘𝑅) ∖ (𝑈 ∪ {(0g‘𝑅)}))) |
14 | 13 | eldifbd 3960 | . 2 ⊢ (𝜑 → ¬ 𝑄 ∈ (𝑈 ∪ {(0g‘𝑅)})) |
15 | nelun 32439 | . . 3 ⊢ ((𝑈 ∪ {(0g‘𝑅)}) = (𝑈 ∪ {(0g‘𝑅)}) → (¬ 𝑄 ∈ (𝑈 ∪ {(0g‘𝑅)}) ↔ (¬ 𝑄 ∈ 𝑈 ∧ ¬ 𝑄 ∈ {(0g‘𝑅)}))) | |
16 | 15 | simprbda 497 | . 2 ⊢ (((𝑈 ∪ {(0g‘𝑅)}) = (𝑈 ∪ {(0g‘𝑅)}) ∧ ¬ 𝑄 ∈ (𝑈 ∪ {(0g‘𝑅)})) → ¬ 𝑄 ∈ 𝑈) |
17 | 1, 14, 16 | syl2anc 582 | 1 ⊢ (𝜑 → ¬ 𝑄 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 845 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ∖ cdif 3944 ∪ cun 3945 {csn 4633 class class class wbr 5153 ‘cfv 6554 (class class class)co 7424 Basecbs 17213 .rcmulr 17267 0gc0g 17454 ∥rcdsr 20336 Unitcui 20337 RPrimecrpm 20414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6506 df-fun 6556 df-fv 6562 df-ov 7427 df-rprm 20415 |
This theorem is referenced by: rsprprmprmidl 33397 rprmndvdsr1 33399 rprmirred 33406 1arithidom 33412 |
Copyright terms: Public domain | W3C validator |