![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmnunit | Structured version Visualization version GIF version |
Description: A ring prime is not a unit. (Contributed by Thierry Arnoux, 18-May-2025.) |
Ref | Expression |
---|---|
rprmdvds.2 | ⊢ 𝑃 = (RPrime‘𝑅) |
rprmdvds.3 | ⊢ 𝑈 = (Unit‘𝑅) |
rprmdvds.5 | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
rprmdvds.6 | ⊢ (𝜑 → 𝑄 ∈ 𝑃) |
Ref | Expression |
---|---|
rprmnunit | ⊢ (𝜑 → ¬ 𝑄 ∈ 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2741 | . 2 ⊢ (𝜑 → (𝑈 ∪ {(0g‘𝑅)}) = (𝑈 ∪ {(0g‘𝑅)})) | |
2 | rprmdvds.5 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
3 | rprmdvds.6 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ 𝑃) | |
4 | rprmdvds.2 | . . . . 5 ⊢ 𝑃 = (RPrime‘𝑅) | |
5 | 3, 4 | eleqtrdi 2854 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (RPrime‘𝑅)) |
6 | eqid 2740 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
7 | rprmdvds.3 | . . . . . 6 ⊢ 𝑈 = (Unit‘𝑅) | |
8 | eqid 2740 | . . . . . 6 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
9 | eqid 2740 | . . . . . 6 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
10 | eqid 2740 | . . . . . 6 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
11 | 6, 7, 8, 9, 10 | isrprm 33510 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝑄 ∈ (RPrime‘𝑅) ↔ (𝑄 ∈ ((Base‘𝑅) ∖ (𝑈 ∪ {(0g‘𝑅)})) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑄(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦) → (𝑄(∥r‘𝑅)𝑥 ∨ 𝑄(∥r‘𝑅)𝑦))))) |
12 | 11 | simprbda 498 | . . . 4 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑄 ∈ (RPrime‘𝑅)) → 𝑄 ∈ ((Base‘𝑅) ∖ (𝑈 ∪ {(0g‘𝑅)}))) |
13 | 2, 5, 12 | syl2anc 583 | . . 3 ⊢ (𝜑 → 𝑄 ∈ ((Base‘𝑅) ∖ (𝑈 ∪ {(0g‘𝑅)}))) |
14 | 13 | eldifbd 3989 | . 2 ⊢ (𝜑 → ¬ 𝑄 ∈ (𝑈 ∪ {(0g‘𝑅)})) |
15 | nelun 32542 | . . 3 ⊢ ((𝑈 ∪ {(0g‘𝑅)}) = (𝑈 ∪ {(0g‘𝑅)}) → (¬ 𝑄 ∈ (𝑈 ∪ {(0g‘𝑅)}) ↔ (¬ 𝑄 ∈ 𝑈 ∧ ¬ 𝑄 ∈ {(0g‘𝑅)}))) | |
16 | 15 | simprbda 498 | . 2 ⊢ (((𝑈 ∪ {(0g‘𝑅)}) = (𝑈 ∪ {(0g‘𝑅)}) ∧ ¬ 𝑄 ∈ (𝑈 ∪ {(0g‘𝑅)})) → ¬ 𝑄 ∈ 𝑈) |
17 | 1, 14, 16 | syl2anc 583 | 1 ⊢ (𝜑 → ¬ 𝑄 ∈ 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∨ wo 846 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∖ cdif 3973 ∪ cun 3974 {csn 4648 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 .rcmulr 17312 0gc0g 17499 ∥rcdsr 20380 Unitcui 20381 RPrimecrpm 20458 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-rprm 20459 |
This theorem is referenced by: rsprprmprmidl 33515 rprmndvdsr1 33517 rprmirred 33524 1arithidom 33530 |
Copyright terms: Public domain | W3C validator |