Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmnunit Structured version   Visualization version   GIF version

Theorem rprmnunit 33465
Description: A ring prime is not a unit. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmdvds.2 𝑃 = (RPrime‘𝑅)
rprmdvds.3 𝑈 = (Unit‘𝑅)
rprmdvds.5 (𝜑𝑅𝑉)
rprmdvds.6 (𝜑𝑄𝑃)
Assertion
Ref Expression
rprmnunit (𝜑 → ¬ 𝑄𝑈)

Proof of Theorem rprmnunit
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . 2 (𝜑 → (𝑈 ∪ {(0g𝑅)}) = (𝑈 ∪ {(0g𝑅)}))
2 rprmdvds.5 . . . 4 (𝜑𝑅𝑉)
3 rprmdvds.6 . . . . 5 (𝜑𝑄𝑃)
4 rprmdvds.2 . . . . 5 𝑃 = (RPrime‘𝑅)
53, 4eleqtrdi 2838 . . . 4 (𝜑𝑄 ∈ (RPrime‘𝑅))
6 eqid 2729 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
7 rprmdvds.3 . . . . . 6 𝑈 = (Unit‘𝑅)
8 eqid 2729 . . . . . 6 (0g𝑅) = (0g𝑅)
9 eqid 2729 . . . . . 6 (∥r𝑅) = (∥r𝑅)
10 eqid 2729 . . . . . 6 (.r𝑅) = (.r𝑅)
116, 7, 8, 9, 10isrprm 33461 . . . . 5 (𝑅𝑉 → (𝑄 ∈ (RPrime‘𝑅) ↔ (𝑄 ∈ ((Base‘𝑅) ∖ (𝑈 ∪ {(0g𝑅)})) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑄(∥r𝑅)(𝑥(.r𝑅)𝑦) → (𝑄(∥r𝑅)𝑥𝑄(∥r𝑅)𝑦)))))
1211simprbda 498 . . . 4 ((𝑅𝑉𝑄 ∈ (RPrime‘𝑅)) → 𝑄 ∈ ((Base‘𝑅) ∖ (𝑈 ∪ {(0g𝑅)})))
132, 5, 12syl2anc 584 . . 3 (𝜑𝑄 ∈ ((Base‘𝑅) ∖ (𝑈 ∪ {(0g𝑅)})))
1413eldifbd 3924 . 2 (𝜑 → ¬ 𝑄 ∈ (𝑈 ∪ {(0g𝑅)}))
15 nelun 32415 . . 3 ((𝑈 ∪ {(0g𝑅)}) = (𝑈 ∪ {(0g𝑅)}) → (¬ 𝑄 ∈ (𝑈 ∪ {(0g𝑅)}) ↔ (¬ 𝑄𝑈 ∧ ¬ 𝑄 ∈ {(0g𝑅)})))
1615simprbda 498 . 2 (((𝑈 ∪ {(0g𝑅)}) = (𝑈 ∪ {(0g𝑅)}) ∧ ¬ 𝑄 ∈ (𝑈 ∪ {(0g𝑅)})) → ¬ 𝑄𝑈)
171, 14, 16syl2anc 584 1 (𝜑 → ¬ 𝑄𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 847   = wceq 1540  wcel 2109  wral 3044  cdif 3908  cun 3909  {csn 4585   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  .rcmulr 17197  0gc0g 17378  rcdsr 20239  Unitcui 20240  RPrimecrpm 20317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-rprm 20318
This theorem is referenced by:  rsprprmprmidl  33466  rprmndvdsr1  33468  rprmirred  33475  1arithidom  33481
  Copyright terms: Public domain W3C validator