Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmnz Structured version   Visualization version   GIF version

Theorem rprmnz 33491
Description: A ring prime is nonzero. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmnz.p 𝑃 = (RPrime‘𝑅)
rprmnz.0 0 = (0g𝑅)
rprmnz.r (𝜑𝑅𝑉)
rprmnz.q (𝜑𝑄𝑃)
Assertion
Ref Expression
rprmnz (𝜑𝑄0 )

Proof of Theorem rprmnz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . . 3 (𝜑 → ((Unit‘𝑅) ∪ { 0 }) = ((Unit‘𝑅) ∪ { 0 }))
2 rprmnz.r . . . . 5 (𝜑𝑅𝑉)
3 rprmnz.q . . . . . 6 (𝜑𝑄𝑃)
4 rprmnz.p . . . . . 6 𝑃 = (RPrime‘𝑅)
53, 4eleqtrdi 2838 . . . . 5 (𝜑𝑄 ∈ (RPrime‘𝑅))
6 eqid 2729 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2729 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
8 rprmnz.0 . . . . . . 7 0 = (0g𝑅)
9 eqid 2729 . . . . . . 7 (∥r𝑅) = (∥r𝑅)
10 eqid 2729 . . . . . . 7 (.r𝑅) = (.r𝑅)
116, 7, 8, 9, 10isrprm 33488 . . . . . 6 (𝑅𝑉 → (𝑄 ∈ (RPrime‘𝑅) ↔ (𝑄 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ { 0 })) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑄(∥r𝑅)(𝑥(.r𝑅)𝑦) → (𝑄(∥r𝑅)𝑥𝑄(∥r𝑅)𝑦)))))
1211simprbda 498 . . . . 5 ((𝑅𝑉𝑄 ∈ (RPrime‘𝑅)) → 𝑄 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ { 0 })))
132, 5, 12syl2anc 584 . . . 4 (𝜑𝑄 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ { 0 })))
1413eldifbd 3927 . . 3 (𝜑 → ¬ 𝑄 ∈ ((Unit‘𝑅) ∪ { 0 }))
15 nelun 32442 . . . 4 (((Unit‘𝑅) ∪ { 0 }) = ((Unit‘𝑅) ∪ { 0 }) → (¬ 𝑄 ∈ ((Unit‘𝑅) ∪ { 0 }) ↔ (¬ 𝑄 ∈ (Unit‘𝑅) ∧ ¬ 𝑄 ∈ { 0 })))
1615simplbda 499 . . 3 ((((Unit‘𝑅) ∪ { 0 }) = ((Unit‘𝑅) ∪ { 0 }) ∧ ¬ 𝑄 ∈ ((Unit‘𝑅) ∪ { 0 })) → ¬ 𝑄 ∈ { 0 })
171, 14, 16syl2anc 584 . 2 (𝜑 → ¬ 𝑄 ∈ { 0 })
18 elsng 4603 . . . 4 (𝑄𝑃 → (𝑄 ∈ { 0 } ↔ 𝑄 = 0 ))
193, 18syl 17 . . 3 (𝜑 → (𝑄 ∈ { 0 } ↔ 𝑄 = 0 ))
2019necon3bbid 2962 . 2 (𝜑 → (¬ 𝑄 ∈ { 0 } ↔ 𝑄0 ))
2117, 20mpbid 232 1 (𝜑𝑄0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1540  wcel 2109  wne 2925  wral 3044  cdif 3911  cun 3912  {csn 4589   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  .rcmulr 17221  0gc0g 17402  rcdsr 20263  Unitcui 20264  RPrimecrpm 20341
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-rprm 20342
This theorem is referenced by:  rprmasso  33496  rprmasso2  33497  rprmirred  33502  1arithidomlem1  33506  1arithufdlem3  33517  dfufd2lem  33520
  Copyright terms: Public domain W3C validator