| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmnz | Structured version Visualization version GIF version | ||
| Description: A ring prime is nonzero. (Contributed by Thierry Arnoux, 18-May-2025.) |
| Ref | Expression |
|---|---|
| rprmnz.p | ⊢ 𝑃 = (RPrime‘𝑅) |
| rprmnz.0 | ⊢ 0 = (0g‘𝑅) |
| rprmnz.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| rprmnz.q | ⊢ (𝜑 → 𝑄 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| rprmnz | ⊢ (𝜑 → 𝑄 ≠ 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . . 3 ⊢ (𝜑 → ((Unit‘𝑅) ∪ { 0 }) = ((Unit‘𝑅) ∪ { 0 })) | |
| 2 | rprmnz.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 3 | rprmnz.q | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝑃) | |
| 4 | rprmnz.p | . . . . . 6 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 5 | 3, 4 | eleqtrdi 2838 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (RPrime‘𝑅)) |
| 6 | eqid 2729 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | eqid 2729 | . . . . . . 7 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 8 | rprmnz.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 9 | eqid 2729 | . . . . . . 7 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
| 10 | eqid 2729 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 11 | 6, 7, 8, 9, 10 | isrprm 33473 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → (𝑄 ∈ (RPrime‘𝑅) ↔ (𝑄 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ { 0 })) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑄(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦) → (𝑄(∥r‘𝑅)𝑥 ∨ 𝑄(∥r‘𝑅)𝑦))))) |
| 12 | 11 | simprbda 498 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑄 ∈ (RPrime‘𝑅)) → 𝑄 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ { 0 }))) |
| 13 | 2, 5, 12 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ { 0 }))) |
| 14 | 13 | eldifbd 3918 | . . 3 ⊢ (𝜑 → ¬ 𝑄 ∈ ((Unit‘𝑅) ∪ { 0 })) |
| 15 | nelun 32476 | . . . 4 ⊢ (((Unit‘𝑅) ∪ { 0 }) = ((Unit‘𝑅) ∪ { 0 }) → (¬ 𝑄 ∈ ((Unit‘𝑅) ∪ { 0 }) ↔ (¬ 𝑄 ∈ (Unit‘𝑅) ∧ ¬ 𝑄 ∈ { 0 }))) | |
| 16 | 15 | simplbda 499 | . . 3 ⊢ ((((Unit‘𝑅) ∪ { 0 }) = ((Unit‘𝑅) ∪ { 0 }) ∧ ¬ 𝑄 ∈ ((Unit‘𝑅) ∪ { 0 })) → ¬ 𝑄 ∈ { 0 }) |
| 17 | 1, 14, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → ¬ 𝑄 ∈ { 0 }) |
| 18 | elsng 4593 | . . . 4 ⊢ (𝑄 ∈ 𝑃 → (𝑄 ∈ { 0 } ↔ 𝑄 = 0 )) | |
| 19 | 3, 18 | syl 17 | . . 3 ⊢ (𝜑 → (𝑄 ∈ { 0 } ↔ 𝑄 = 0 )) |
| 20 | 19 | necon3bbid 2962 | . 2 ⊢ (𝜑 → (¬ 𝑄 ∈ { 0 } ↔ 𝑄 ≠ 0 )) |
| 21 | 17, 20 | mpbid 232 | 1 ⊢ (𝜑 → 𝑄 ≠ 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∖ cdif 3902 ∪ cun 3903 {csn 4579 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 Basecbs 17139 .rcmulr 17181 0gc0g 17362 ∥rcdsr 20258 Unitcui 20259 RPrimecrpm 20336 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-rprm 20337 |
| This theorem is referenced by: rprmasso 33481 rprmasso2 33482 rprmirred 33487 1arithidomlem1 33491 1arithufdlem3 33502 dfufd2lem 33505 |
| Copyright terms: Public domain | W3C validator |