Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmnz Structured version   Visualization version   GIF version

Theorem rprmnz 33477
Description: A ring prime is nonzero. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmnz.p 𝑃 = (RPrime‘𝑅)
rprmnz.0 0 = (0g𝑅)
rprmnz.r (𝜑𝑅𝑉)
rprmnz.q (𝜑𝑄𝑃)
Assertion
Ref Expression
rprmnz (𝜑𝑄0 )

Proof of Theorem rprmnz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2732 . . 3 (𝜑 → ((Unit‘𝑅) ∪ { 0 }) = ((Unit‘𝑅) ∪ { 0 }))
2 rprmnz.r . . . . 5 (𝜑𝑅𝑉)
3 rprmnz.q . . . . . 6 (𝜑𝑄𝑃)
4 rprmnz.p . . . . . 6 𝑃 = (RPrime‘𝑅)
53, 4eleqtrdi 2841 . . . . 5 (𝜑𝑄 ∈ (RPrime‘𝑅))
6 eqid 2731 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2731 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
8 rprmnz.0 . . . . . . 7 0 = (0g𝑅)
9 eqid 2731 . . . . . . 7 (∥r𝑅) = (∥r𝑅)
10 eqid 2731 . . . . . . 7 (.r𝑅) = (.r𝑅)
116, 7, 8, 9, 10isrprm 33474 . . . . . 6 (𝑅𝑉 → (𝑄 ∈ (RPrime‘𝑅) ↔ (𝑄 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ { 0 })) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑄(∥r𝑅)(𝑥(.r𝑅)𝑦) → (𝑄(∥r𝑅)𝑥𝑄(∥r𝑅)𝑦)))))
1211simprbda 498 . . . . 5 ((𝑅𝑉𝑄 ∈ (RPrime‘𝑅)) → 𝑄 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ { 0 })))
132, 5, 12syl2anc 584 . . . 4 (𝜑𝑄 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ { 0 })))
1413eldifbd 3910 . . 3 (𝜑 → ¬ 𝑄 ∈ ((Unit‘𝑅) ∪ { 0 }))
15 nelun 32485 . . . 4 (((Unit‘𝑅) ∪ { 0 }) = ((Unit‘𝑅) ∪ { 0 }) → (¬ 𝑄 ∈ ((Unit‘𝑅) ∪ { 0 }) ↔ (¬ 𝑄 ∈ (Unit‘𝑅) ∧ ¬ 𝑄 ∈ { 0 })))
1615simplbda 499 . . 3 ((((Unit‘𝑅) ∪ { 0 }) = ((Unit‘𝑅) ∪ { 0 }) ∧ ¬ 𝑄 ∈ ((Unit‘𝑅) ∪ { 0 })) → ¬ 𝑄 ∈ { 0 })
171, 14, 16syl2anc 584 . 2 (𝜑 → ¬ 𝑄 ∈ { 0 })
18 elsng 4585 . . . 4 (𝑄𝑃 → (𝑄 ∈ { 0 } ↔ 𝑄 = 0 ))
193, 18syl 17 . . 3 (𝜑 → (𝑄 ∈ { 0 } ↔ 𝑄 = 0 ))
2019necon3bbid 2965 . 2 (𝜑 → (¬ 𝑄 ∈ { 0 } ↔ 𝑄0 ))
2117, 20mpbid 232 1 (𝜑𝑄0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1541  wcel 2111  wne 2928  wral 3047  cdif 3894  cun 3895  {csn 4571   class class class wbr 5086  cfv 6476  (class class class)co 7341  Basecbs 17115  .rcmulr 17157  0gc0g 17338  rcdsr 20267  Unitcui 20268  RPrimecrpm 20345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-iota 6432  df-fun 6478  df-fv 6484  df-ov 7344  df-rprm 20346
This theorem is referenced by:  rprmasso  33482  rprmasso2  33483  rprmirred  33488  1arithidomlem1  33492  1arithufdlem3  33503  dfufd2lem  33506
  Copyright terms: Public domain W3C validator