Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rprmnz Structured version   Visualization version   GIF version

Theorem rprmnz 33535
Description: A ring prime is nonzero. (Contributed by Thierry Arnoux, 18-May-2025.)
Hypotheses
Ref Expression
rprmnz.p 𝑃 = (RPrime‘𝑅)
rprmnz.0 0 = (0g𝑅)
rprmnz.r (𝜑𝑅𝑉)
rprmnz.q (𝜑𝑄𝑃)
Assertion
Ref Expression
rprmnz (𝜑𝑄0 )

Proof of Theorem rprmnz
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqidd 2736 . . 3 (𝜑 → ((Unit‘𝑅) ∪ { 0 }) = ((Unit‘𝑅) ∪ { 0 }))
2 rprmnz.r . . . . 5 (𝜑𝑅𝑉)
3 rprmnz.q . . . . . 6 (𝜑𝑄𝑃)
4 rprmnz.p . . . . . 6 𝑃 = (RPrime‘𝑅)
53, 4eleqtrdi 2844 . . . . 5 (𝜑𝑄 ∈ (RPrime‘𝑅))
6 eqid 2735 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2735 . . . . . . 7 (Unit‘𝑅) = (Unit‘𝑅)
8 rprmnz.0 . . . . . . 7 0 = (0g𝑅)
9 eqid 2735 . . . . . . 7 (∥r𝑅) = (∥r𝑅)
10 eqid 2735 . . . . . . 7 (.r𝑅) = (.r𝑅)
116, 7, 8, 9, 10isrprm 33532 . . . . . 6 (𝑅𝑉 → (𝑄 ∈ (RPrime‘𝑅) ↔ (𝑄 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ { 0 })) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑄(∥r𝑅)(𝑥(.r𝑅)𝑦) → (𝑄(∥r𝑅)𝑥𝑄(∥r𝑅)𝑦)))))
1211simprbda 498 . . . . 5 ((𝑅𝑉𝑄 ∈ (RPrime‘𝑅)) → 𝑄 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ { 0 })))
132, 5, 12syl2anc 584 . . . 4 (𝜑𝑄 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ { 0 })))
1413eldifbd 3939 . . 3 (𝜑 → ¬ 𝑄 ∈ ((Unit‘𝑅) ∪ { 0 }))
15 nelun 32494 . . . 4 (((Unit‘𝑅) ∪ { 0 }) = ((Unit‘𝑅) ∪ { 0 }) → (¬ 𝑄 ∈ ((Unit‘𝑅) ∪ { 0 }) ↔ (¬ 𝑄 ∈ (Unit‘𝑅) ∧ ¬ 𝑄 ∈ { 0 })))
1615simplbda 499 . . 3 ((((Unit‘𝑅) ∪ { 0 }) = ((Unit‘𝑅) ∪ { 0 }) ∧ ¬ 𝑄 ∈ ((Unit‘𝑅) ∪ { 0 })) → ¬ 𝑄 ∈ { 0 })
171, 14, 16syl2anc 584 . 2 (𝜑 → ¬ 𝑄 ∈ { 0 })
18 elsng 4615 . . . 4 (𝑄𝑃 → (𝑄 ∈ { 0 } ↔ 𝑄 = 0 ))
193, 18syl 17 . . 3 (𝜑 → (𝑄 ∈ { 0 } ↔ 𝑄 = 0 ))
2019necon3bbid 2969 . 2 (𝜑 → (¬ 𝑄 ∈ { 0 } ↔ 𝑄0 ))
2117, 20mpbid 232 1 (𝜑𝑄0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wo 847   = wceq 1540  wcel 2108  wne 2932  wral 3051  cdif 3923  cun 3924  {csn 4601   class class class wbr 5119  cfv 6531  (class class class)co 7405  Basecbs 17228  .rcmulr 17272  0gc0g 17453  rcdsr 20314  Unitcui 20315  RPrimecrpm 20392
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-ov 7408  df-rprm 20393
This theorem is referenced by:  rprmasso  33540  rprmasso2  33541  rprmirred  33546  1arithidomlem1  33550  1arithufdlem3  33561  dfufd2lem  33564
  Copyright terms: Public domain W3C validator