|   | Mathbox for Thierry Arnoux | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rprmnz | Structured version Visualization version GIF version | ||
| Description: A ring prime is nonzero. (Contributed by Thierry Arnoux, 18-May-2025.) | 
| Ref | Expression | 
|---|---|
| rprmnz.p | ⊢ 𝑃 = (RPrime‘𝑅) | 
| rprmnz.0 | ⊢ 0 = (0g‘𝑅) | 
| rprmnz.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) | 
| rprmnz.q | ⊢ (𝜑 → 𝑄 ∈ 𝑃) | 
| Ref | Expression | 
|---|---|
| rprmnz | ⊢ (𝜑 → 𝑄 ≠ 0 ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eqidd 2738 | . . 3 ⊢ (𝜑 → ((Unit‘𝑅) ∪ { 0 }) = ((Unit‘𝑅) ∪ { 0 })) | |
| 2 | rprmnz.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 3 | rprmnz.q | . . . . . 6 ⊢ (𝜑 → 𝑄 ∈ 𝑃) | |
| 4 | rprmnz.p | . . . . . 6 ⊢ 𝑃 = (RPrime‘𝑅) | |
| 5 | 3, 4 | eleqtrdi 2851 | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ (RPrime‘𝑅)) | 
| 6 | eqid 2737 | . . . . . . 7 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | eqid 2737 | . . . . . . 7 ⊢ (Unit‘𝑅) = (Unit‘𝑅) | |
| 8 | rprmnz.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 9 | eqid 2737 | . . . . . . 7 ⊢ (∥r‘𝑅) = (∥r‘𝑅) | |
| 10 | eqid 2737 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 11 | 6, 7, 8, 9, 10 | isrprm 33545 | . . . . . 6 ⊢ (𝑅 ∈ 𝑉 → (𝑄 ∈ (RPrime‘𝑅) ↔ (𝑄 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ { 0 })) ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑦 ∈ (Base‘𝑅)(𝑄(∥r‘𝑅)(𝑥(.r‘𝑅)𝑦) → (𝑄(∥r‘𝑅)𝑥 ∨ 𝑄(∥r‘𝑅)𝑦))))) | 
| 12 | 11 | simprbda 498 | . . . . 5 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑄 ∈ (RPrime‘𝑅)) → 𝑄 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ { 0 }))) | 
| 13 | 2, 5, 12 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ ((Base‘𝑅) ∖ ((Unit‘𝑅) ∪ { 0 }))) | 
| 14 | 13 | eldifbd 3964 | . . 3 ⊢ (𝜑 → ¬ 𝑄 ∈ ((Unit‘𝑅) ∪ { 0 })) | 
| 15 | nelun 32532 | . . . 4 ⊢ (((Unit‘𝑅) ∪ { 0 }) = ((Unit‘𝑅) ∪ { 0 }) → (¬ 𝑄 ∈ ((Unit‘𝑅) ∪ { 0 }) ↔ (¬ 𝑄 ∈ (Unit‘𝑅) ∧ ¬ 𝑄 ∈ { 0 }))) | |
| 16 | 15 | simplbda 499 | . . 3 ⊢ ((((Unit‘𝑅) ∪ { 0 }) = ((Unit‘𝑅) ∪ { 0 }) ∧ ¬ 𝑄 ∈ ((Unit‘𝑅) ∪ { 0 })) → ¬ 𝑄 ∈ { 0 }) | 
| 17 | 1, 14, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → ¬ 𝑄 ∈ { 0 }) | 
| 18 | elsng 4640 | . . . 4 ⊢ (𝑄 ∈ 𝑃 → (𝑄 ∈ { 0 } ↔ 𝑄 = 0 )) | |
| 19 | 3, 18 | syl 17 | . . 3 ⊢ (𝜑 → (𝑄 ∈ { 0 } ↔ 𝑄 = 0 )) | 
| 20 | 19 | necon3bbid 2978 | . 2 ⊢ (𝜑 → (¬ 𝑄 ∈ { 0 } ↔ 𝑄 ≠ 0 )) | 
| 21 | 17, 20 | mpbid 232 | 1 ⊢ (𝜑 → 𝑄 ≠ 0 ) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∨ wo 848 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 ∀wral 3061 ∖ cdif 3948 ∪ cun 3949 {csn 4626 class class class wbr 5143 ‘cfv 6561 (class class class)co 7431 Basecbs 17247 .rcmulr 17298 0gc0g 17484 ∥rcdsr 20354 Unitcui 20355 RPrimecrpm 20432 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-ov 7434 df-rprm 20433 | 
| This theorem is referenced by: rprmasso 33553 rprmasso2 33554 rprmirred 33559 1arithidomlem1 33563 1arithufdlem3 33574 dfufd2lem 33577 | 
| Copyright terms: Public domain | W3C validator |