Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rusgrnumwwlkg | Structured version Visualization version GIF version |
Description: In a 𝐾-regular graph, the number of walks (as words) of a fixed length 𝑁 from a fixed vertex is 𝐾 to the power of 𝑁. Closed form of rusgrnumwwlk 28541. (Contributed by Alexander van der Vekens, 30-Sep-2018.) (Revised by AV, 7-May-2021.) |
Ref | Expression |
---|---|
rusgrnumwwlkg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
rusgrnumwwlkg | ⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpc 1149 | . . . 4 ⊢ ((𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) | |
2 | 1 | adantl 482 | . . 3 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) |
3 | rusgrnumwwlkg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | eqid 2736 | . . . 4 ⊢ (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣})) | |
5 | 3, 4 | rusgrnumwwlklem 28536 | . . 3 ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (𝑃(𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
6 | 2, 5 | syl 17 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (𝑃(𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))𝑁) = (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃})) |
7 | 3, 4 | rusgrnumwwlk 28541 | . 2 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (𝑃(𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))𝑁) = (𝐾↑𝑁)) |
8 | 6, 7 | eqtr3d 2778 | 1 ⊢ ((𝐺 RegUSGraph 𝐾 ∧ (𝑉 ∈ Fin ∧ 𝑃 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0)) → (♯‘{𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (𝐾↑𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 {crab 3403 class class class wbr 5089 ‘cfv 6473 (class class class)co 7329 ∈ cmpo 7331 Fincfn 8796 0cc0 10964 ℕ0cn0 12326 ↑cexp 13875 ♯chash 14137 Vtxcvtx 27568 RegUSGraph crusgr 28125 WWalksN cwwlksn 28392 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 ax-inf2 9490 ax-cnex 11020 ax-resscn 11021 ax-1cn 11022 ax-icn 11023 ax-addcl 11024 ax-addrcl 11025 ax-mulcl 11026 ax-mulrcl 11027 ax-mulcom 11028 ax-addass 11029 ax-mulass 11030 ax-distr 11031 ax-i2m1 11032 ax-1ne0 11033 ax-1rid 11034 ax-rnegex 11035 ax-rrecex 11036 ax-cnre 11037 ax-pre-lttri 11038 ax-pre-lttrn 11039 ax-pre-ltadd 11040 ax-pre-mulgt0 11041 ax-pre-sup 11042 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-int 4894 df-iun 4940 df-disj 5055 df-br 5090 df-opab 5152 df-mpt 5173 df-tr 5207 df-id 5512 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-se 5570 df-we 5571 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6232 df-ord 6299 df-on 6300 df-lim 6301 df-suc 6302 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-isom 6482 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-om 7773 df-1st 7891 df-2nd 7892 df-frecs 8159 df-wrecs 8190 df-recs 8264 df-rdg 8303 df-1o 8359 df-2o 8360 df-oadd 8363 df-er 8561 df-map 8680 df-pm 8681 df-en 8797 df-dom 8798 df-sdom 8799 df-fin 8800 df-sup 9291 df-oi 9359 df-dju 9750 df-card 9788 df-pnf 11104 df-mnf 11105 df-xr 11106 df-ltxr 11107 df-le 11108 df-sub 11300 df-neg 11301 df-div 11726 df-nn 12067 df-2 12129 df-3 12130 df-n0 12327 df-xnn0 12399 df-z 12413 df-uz 12676 df-rp 12824 df-xadd 12942 df-fz 13333 df-fzo 13476 df-seq 13815 df-exp 13876 df-hash 14138 df-word 14310 df-lsw 14358 df-concat 14366 df-s1 14392 df-substr 14444 df-pfx 14474 df-cj 14901 df-re 14902 df-im 14903 df-sqrt 15037 df-abs 15038 df-clim 15288 df-sum 15489 df-vtx 27570 df-iedg 27571 df-edg 27620 df-uhgr 27630 df-ushgr 27631 df-upgr 27654 df-umgr 27655 df-uspgr 27722 df-usgr 27723 df-fusgr 27886 df-nbgr 27902 df-vtxdg 28035 df-rgr 28126 df-rusgr 28127 df-wwlks 28396 df-wwlksn 28397 |
This theorem is referenced by: rusgrnumwlkg 28543 clwwlknclwwlkdifnum 28545 |
Copyright terms: Public domain | W3C validator |