![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rusgrnumwwlkb1 | Structured version Visualization version GIF version |
Description: Induction base 1 for rusgrnumwwlk 29825. (Contributed by Alexander van der Vekens, 28-Jul-2018.) (Revised by AV, 7-May-2021.) |
Ref | Expression |
---|---|
rusgrnumwwlk.v | ⢠ð = (Vtxâðº) |
rusgrnumwwlk.l | ⢠ð¿ = (ð£ â ð, ð â â0 ⊠(â¯â{ð€ â (ð WWalksN ðº) ⣠(ð€â0) = ð£})) |
Ref | Expression |
---|---|
rusgrnumwwlkb1 | ⢠((ðº RegUSGraph ðŸ â§ ð â ð) â (ðð¿1) = ðŸ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 483 | . . 3 ⢠((ðº RegUSGraph ðŸ â§ ð â ð) â ð â ð) | |
2 | 1nn0 12513 | . . 3 ⢠1 â â0 | |
3 | rusgrnumwwlk.v | . . . 4 ⢠ð = (Vtxâðº) | |
4 | rusgrnumwwlk.l | . . . 4 ⢠ð¿ = (ð£ â ð, ð â â0 ⊠(â¯â{ð€ â (ð WWalksN ðº) ⣠(ð€â0) = ð£})) | |
5 | 3, 4 | rusgrnumwwlklem 29820 | . . 3 ⢠((ð â ð â§ 1 â â0) â (ðð¿1) = (â¯â{ð€ â (1 WWalksN ðº) ⣠(ð€â0) = ð})) |
6 | 1, 2, 5 | sylancl 584 | . 2 ⢠((ðº RegUSGraph ðŸ â§ ð â ð) â (ðð¿1) = (â¯â{ð€ â (1 WWalksN ðº) ⣠(ð€â0) = ð})) |
7 | 3 | rusgrnumwwlkl1 29818 | . 2 ⢠((ðº RegUSGraph ðŸ â§ ð â ð) â (â¯â{ð€ â (1 WWalksN ðº) ⣠(ð€â0) = ð}) = ðŸ) |
8 | 6, 7 | eqtrd 2765 | 1 ⢠((ðº RegUSGraph ðŸ â§ ð â ð) â (ðð¿1) = ðŸ) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 â§ wa 394 = wceq 1533 â wcel 2098 {crab 3419 class class class wbr 5144 âcfv 6543 (class class class)co 7413 â cmpo 7415 0cc0 11133 1c1 11134 â0cn0 12497 â¯chash 14316 Vtxcvtx 28848 RegUSGraph crusgr 29409 WWalksN cwwlksn 29676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3961 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5145 df-opab 5207 df-mpt 5228 df-tr 5262 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8718 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-dju 9919 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-n0 12498 df-xnn0 12570 df-z 12584 df-uz 12848 df-xadd 13120 df-fz 13512 df-fzo 13655 df-hash 14317 df-word 14492 df-edg 28900 df-uhgr 28910 df-ushgr 28911 df-upgr 28934 df-umgr 28935 df-uspgr 29002 df-usgr 29003 df-nbgr 29185 df-vtxdg 29319 df-rgr 29410 df-rusgr 29411 df-wwlks 29680 df-wwlksn 29681 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |