MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlkb0 Structured version   Visualization version   GIF version

Theorem rusgrnumwwlkb0 29734
Description: Induction base 0 for rusgrnumwwlk 29738. Here, we do not need the regularity of the graph yet. (Contributed by Alexander van der Vekens, 24-Jul-2018.) (Revised by AV, 7-May-2021.)
Hypotheses
Ref Expression
rusgrnumwwlk.v 𝑉 = (Vtx‘𝐺)
rusgrnumwwlk.l 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↩ (♯‘{𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑣}))
Assertion
Ref Expression
rusgrnumwwlkb0 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → (𝑃𝐿0) = 1)
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑃,𝑛,𝑣,𝑀   𝑛,𝑉,𝑣,𝑀
Allowed substitution hints:   𝐿(𝑀,𝑣,𝑛)

Proof of Theorem rusgrnumwwlkb0
StepHypRef Expression
1 simpr 484 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → 𝑃 ∈ 𝑉)
2 0nn0 12491 . . 3 0 ∈ ℕ0
3 rusgrnumwwlk.v . . . 4 𝑉 = (Vtx‘𝐺)
4 rusgrnumwwlk.l . . . 4 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↩ (♯‘{𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑣}))
53, 4rusgrnumwwlklem 29733 . . 3 ((𝑃 ∈ 𝑉 ∧ 0 ∈ ℕ0) → (𝑃𝐿0) = (♯‘{𝑀 ∈ (0 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃}))
61, 2, 5sylancl 585 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → (𝑃𝐿0) = (♯‘{𝑀 ∈ (0 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃}))
7 df-rab 3427 . . . . 5 {𝑀 ∈ (0 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃} = {𝑀 ∣ (𝑀 ∈ (0 WWalksN 𝐺) ∧ (𝑀‘0) = 𝑃)}
87a1i 11 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → {𝑀 ∈ (0 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃} = {𝑀 ∣ (𝑀 ∈ (0 WWalksN 𝐺) ∧ (𝑀‘0) = 𝑃)})
9 wwlksn0s 29624 . . . . . . . . 9 (0 WWalksN 𝐺) = {𝑀 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑀) = 1}
109a1i 11 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → (0 WWalksN 𝐺) = {𝑀 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑀) = 1})
1110eleq2d 2813 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → (𝑀 ∈ (0 WWalksN 𝐺) ↔ 𝑀 ∈ {𝑀 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑀) = 1}))
12 rabid 3446 . . . . . . 7 (𝑀 ∈ {𝑀 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑀) = 1} ↔ (𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1))
1311, 12bitrdi 287 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → (𝑀 ∈ (0 WWalksN 𝐺) ↔ (𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1)))
1413anbi1d 629 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → ((𝑀 ∈ (0 WWalksN 𝐺) ∧ (𝑀‘0) = 𝑃) ↔ ((𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1) ∧ (𝑀‘0) = 𝑃)))
1514abbidv 2795 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → {𝑀 ∣ (𝑀 ∈ (0 WWalksN 𝐺) ∧ (𝑀‘0) = 𝑃)} = {𝑀 ∣ ((𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1) ∧ (𝑀‘0) = 𝑃)})
16 wrdl1s1 14570 . . . . . . . . 9 (𝑃 ∈ (Vtx‘𝐺) → (𝑣 = ⟚“𝑃”⟩ ↔ (𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1 ∧ (𝑣‘0) = 𝑃)))
17 df-3an 1086 . . . . . . . . 9 ((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1 ∧ (𝑣‘0) = 𝑃) ↔ ((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃))
1816, 17bitr2di 288 . . . . . . . 8 (𝑃 ∈ (Vtx‘𝐺) → (((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃) ↔ 𝑣 = ⟚“𝑃”⟩))
19 vex 3472 . . . . . . . . 9 𝑣 ∈ V
20 eleq1w 2810 . . . . . . . . . . 11 (𝑀 = 𝑣 → (𝑀 ∈ Word (Vtx‘𝐺) ↔ 𝑣 ∈ Word (Vtx‘𝐺)))
21 fveqeq2 6894 . . . . . . . . . . 11 (𝑀 = 𝑣 → ((♯‘𝑀) = 1 ↔ (♯‘𝑣) = 1))
2220, 21anbi12d 630 . . . . . . . . . 10 (𝑀 = 𝑣 → ((𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1) ↔ (𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1)))
23 fveq1 6884 . . . . . . . . . . 11 (𝑀 = 𝑣 → (𝑀‘0) = (𝑣‘0))
2423eqeq1d 2728 . . . . . . . . . 10 (𝑀 = 𝑣 → ((𝑀‘0) = 𝑃 ↔ (𝑣‘0) = 𝑃))
2522, 24anbi12d 630 . . . . . . . . 9 (𝑀 = 𝑣 → (((𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1) ∧ (𝑀‘0) = 𝑃) ↔ ((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃)))
2619, 25elab 3663 . . . . . . . 8 (𝑣 ∈ {𝑀 ∣ ((𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1) ∧ (𝑀‘0) = 𝑃)} ↔ ((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃))
27 velsn 4639 . . . . . . . 8 (𝑣 ∈ {⟚“𝑃”⟩} ↔ 𝑣 = ⟚“𝑃”⟩)
2818, 26, 273bitr4g 314 . . . . . . 7 (𝑃 ∈ (Vtx‘𝐺) → (𝑣 ∈ {𝑀 ∣ ((𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1) ∧ (𝑀‘0) = 𝑃)} ↔ 𝑣 ∈ {⟚“𝑃”⟩}))
2928, 3eleq2s 2845 . . . . . 6 (𝑃 ∈ 𝑉 → (𝑣 ∈ {𝑀 ∣ ((𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1) ∧ (𝑀‘0) = 𝑃)} ↔ 𝑣 ∈ {⟚“𝑃”⟩}))
3029eqrdv 2724 . . . . 5 (𝑃 ∈ 𝑉 → {𝑀 ∣ ((𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1) ∧ (𝑀‘0) = 𝑃)} = {⟚“𝑃”⟩})
3130adantl 481 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → {𝑀 ∣ ((𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1) ∧ (𝑀‘0) = 𝑃)} = {⟚“𝑃”⟩})
328, 15, 313eqtrd 2770 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → {𝑀 ∈ (0 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃} = {⟚“𝑃”⟩})
3332fveq2d 6889 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑀 ∈ (0 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃}) = (♯‘{⟚“𝑃”⟩}))
34 s1cl 14558 . . . 4 (𝑃 ∈ 𝑉 → ⟚“𝑃”⟩ ∈ Word 𝑉)
35 hashsng 14334 . . . 4 (⟚“𝑃”⟩ ∈ Word 𝑉 → (♯‘{⟚“𝑃”⟩}) = 1)
3634, 35syl 17 . . 3 (𝑃 ∈ 𝑉 → (♯‘{⟚“𝑃”⟩}) = 1)
3736adantl 481 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → (♯‘{⟚“𝑃”⟩}) = 1)
386, 33, 373eqtrd 2770 1 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → (𝑃𝐿0) = 1)
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  {cab 2703  {crab 3426  {csn 4623  â€˜cfv 6537  (class class class)co 7405   ∈ cmpo 7407  0cc0 11112  1c1 11113  â„•0cn0 12476  â™¯chash 14295  Word cword 14470  âŸšâ€œcs1 14551  Vtxcvtx 28764  USPGraphcuspgr 28916   WWalksN cwwlksn 29589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7853  df-1st 7974  df-2nd 7975  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-er 8705  df-map 8824  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-card 9936  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-nn 12217  df-n0 12477  df-xnn0 12549  df-z 12563  df-uz 12827  df-fz 13491  df-fzo 13634  df-hash 14296  df-word 14471  df-s1 14552  df-wwlks 29593  df-wwlksn 29594
This theorem is referenced by:  rusgrnumwwlk  29738
  Copyright terms: Public domain W3C validator