MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlkb0 Structured version   Visualization version   GIF version

Theorem rusgrnumwwlkb0 30004
Description: Induction base 0 for rusgrnumwwlk 30008. Here, we do not need the regularity of the graph yet. (Contributed by Alexander van der Vekens, 24-Jul-2018.) (Revised by AV, 7-May-2021.)
Hypotheses
Ref Expression
rusgrnumwwlk.v 𝑉 = (Vtx‘𝐺)
rusgrnumwwlk.l 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
Assertion
Ref Expression
rusgrnumwwlkb0 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (𝑃𝐿0) = 1)
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑃,𝑛,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤
Allowed substitution hints:   𝐿(𝑤,𝑣,𝑛)

Proof of Theorem rusgrnumwwlkb0
StepHypRef Expression
1 simpr 484 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → 𝑃𝑉)
2 0nn0 12568 . . 3 0 ∈ ℕ0
3 rusgrnumwwlk.v . . . 4 𝑉 = (Vtx‘𝐺)
4 rusgrnumwwlk.l . . . 4 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
53, 4rusgrnumwwlklem 30003 . . 3 ((𝑃𝑉 ∧ 0 ∈ ℕ0) → (𝑃𝐿0) = (♯‘{𝑤 ∈ (0 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}))
61, 2, 5sylancl 585 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (𝑃𝐿0) = (♯‘{𝑤 ∈ (0 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}))
7 df-rab 3444 . . . . 5 {𝑤 ∈ (0 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∣ (𝑤 ∈ (0 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑃)}
87a1i 11 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → {𝑤 ∈ (0 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∣ (𝑤 ∈ (0 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑃)})
9 wwlksn0s 29894 . . . . . . . . 9 (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1}
109a1i 11 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1})
1110eleq2d 2830 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (𝑤 ∈ (0 WWalksN 𝐺) ↔ 𝑤 ∈ {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1}))
12 rabid 3465 . . . . . . 7 (𝑤 ∈ {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1} ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1))
1311, 12bitrdi 287 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (𝑤 ∈ (0 WWalksN 𝐺) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1)))
1413anbi1d 630 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → ((𝑤 ∈ (0 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑃) ↔ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)))
1514abbidv 2811 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → {𝑤 ∣ (𝑤 ∈ (0 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑃)} = {𝑤 ∣ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)})
16 wrdl1s1 14662 . . . . . . . . 9 (𝑃 ∈ (Vtx‘𝐺) → (𝑣 = ⟨“𝑃”⟩ ↔ (𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1 ∧ (𝑣‘0) = 𝑃)))
17 df-3an 1089 . . . . . . . . 9 ((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1 ∧ (𝑣‘0) = 𝑃) ↔ ((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃))
1816, 17bitr2di 288 . . . . . . . 8 (𝑃 ∈ (Vtx‘𝐺) → (((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃) ↔ 𝑣 = ⟨“𝑃”⟩))
19 vex 3492 . . . . . . . . 9 𝑣 ∈ V
20 eleq1w 2827 . . . . . . . . . . 11 (𝑤 = 𝑣 → (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑣 ∈ Word (Vtx‘𝐺)))
21 fveqeq2 6929 . . . . . . . . . . 11 (𝑤 = 𝑣 → ((♯‘𝑤) = 1 ↔ (♯‘𝑣) = 1))
2220, 21anbi12d 631 . . . . . . . . . 10 (𝑤 = 𝑣 → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ↔ (𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1)))
23 fveq1 6919 . . . . . . . . . . 11 (𝑤 = 𝑣 → (𝑤‘0) = (𝑣‘0))
2423eqeq1d 2742 . . . . . . . . . 10 (𝑤 = 𝑣 → ((𝑤‘0) = 𝑃 ↔ (𝑣‘0) = 𝑃))
2522, 24anbi12d 631 . . . . . . . . 9 (𝑤 = 𝑣 → (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃) ↔ ((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃)))
2619, 25elab 3694 . . . . . . . 8 (𝑣 ∈ {𝑤 ∣ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)} ↔ ((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃))
27 velsn 4664 . . . . . . . 8 (𝑣 ∈ {⟨“𝑃”⟩} ↔ 𝑣 = ⟨“𝑃”⟩)
2818, 26, 273bitr4g 314 . . . . . . 7 (𝑃 ∈ (Vtx‘𝐺) → (𝑣 ∈ {𝑤 ∣ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)} ↔ 𝑣 ∈ {⟨“𝑃”⟩}))
2928, 3eleq2s 2862 . . . . . 6 (𝑃𝑉 → (𝑣 ∈ {𝑤 ∣ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)} ↔ 𝑣 ∈ {⟨“𝑃”⟩}))
3029eqrdv 2738 . . . . 5 (𝑃𝑉 → {𝑤 ∣ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)} = {⟨“𝑃”⟩})
3130adantl 481 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → {𝑤 ∣ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)} = {⟨“𝑃”⟩})
328, 15, 313eqtrd 2784 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → {𝑤 ∈ (0 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {⟨“𝑃”⟩})
3332fveq2d 6924 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (♯‘{𝑤 ∈ (0 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (♯‘{⟨“𝑃”⟩}))
34 s1cl 14650 . . . 4 (𝑃𝑉 → ⟨“𝑃”⟩ ∈ Word 𝑉)
35 hashsng 14418 . . . 4 (⟨“𝑃”⟩ ∈ Word 𝑉 → (♯‘{⟨“𝑃”⟩}) = 1)
3634, 35syl 17 . . 3 (𝑃𝑉 → (♯‘{⟨“𝑃”⟩}) = 1)
3736adantl 481 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (♯‘{⟨“𝑃”⟩}) = 1)
386, 33, 373eqtrd 2784 1 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (𝑃𝐿0) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {cab 2717  {crab 3443  {csn 4648  cfv 6573  (class class class)co 7448  cmpo 7450  0cc0 11184  1c1 11185  0cn0 12553  chash 14379  Word cword 14562  ⟨“cs1 14643  Vtxcvtx 29031  USPGraphcuspgr 29183   WWalksN cwwlksn 29859
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-s1 14644  df-wwlks 29863  df-wwlksn 29864
This theorem is referenced by:  rusgrnumwwlk  30008
  Copyright terms: Public domain W3C validator