MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlkb0 Structured version   Visualization version   GIF version

Theorem rusgrnumwwlkb0 27911
Description: Induction base 0 for rusgrnumwwlk 27915. Here, we do not need the regularity of the graph yet. (Contributed by Alexander van der Vekens, 24-Jul-2018.) (Revised by AV, 7-May-2021.)
Hypotheses
Ref Expression
rusgrnumwwlk.v 𝑉 = (Vtx‘𝐺)
rusgrnumwwlk.l 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
Assertion
Ref Expression
rusgrnumwwlkb0 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (𝑃𝐿0) = 1)
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑃,𝑛,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤
Allowed substitution hints:   𝐿(𝑤,𝑣,𝑛)

Proof of Theorem rusgrnumwwlkb0
StepHypRef Expression
1 simpr 488 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → 𝑃𝑉)
2 0nn0 11993 . . 3 0 ∈ ℕ0
3 rusgrnumwwlk.v . . . 4 𝑉 = (Vtx‘𝐺)
4 rusgrnumwwlk.l . . . 4 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
53, 4rusgrnumwwlklem 27910 . . 3 ((𝑃𝑉 ∧ 0 ∈ ℕ0) → (𝑃𝐿0) = (♯‘{𝑤 ∈ (0 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}))
61, 2, 5sylancl 589 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (𝑃𝐿0) = (♯‘{𝑤 ∈ (0 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}))
7 df-rab 3062 . . . . 5 {𝑤 ∈ (0 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∣ (𝑤 ∈ (0 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑃)}
87a1i 11 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → {𝑤 ∈ (0 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∣ (𝑤 ∈ (0 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑃)})
9 wwlksn0s 27801 . . . . . . . . 9 (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1}
109a1i 11 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1})
1110eleq2d 2818 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (𝑤 ∈ (0 WWalksN 𝐺) ↔ 𝑤 ∈ {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1}))
12 rabid 3281 . . . . . . 7 (𝑤 ∈ {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1} ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1))
1311, 12bitrdi 290 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (𝑤 ∈ (0 WWalksN 𝐺) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1)))
1413anbi1d 633 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → ((𝑤 ∈ (0 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑃) ↔ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)))
1514abbidv 2802 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → {𝑤 ∣ (𝑤 ∈ (0 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑃)} = {𝑤 ∣ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)})
16 wrdl1s1 14059 . . . . . . . . 9 (𝑃 ∈ (Vtx‘𝐺) → (𝑣 = ⟨“𝑃”⟩ ↔ (𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1 ∧ (𝑣‘0) = 𝑃)))
17 df-3an 1090 . . . . . . . . 9 ((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1 ∧ (𝑣‘0) = 𝑃) ↔ ((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃))
1816, 17bitr2di 291 . . . . . . . 8 (𝑃 ∈ (Vtx‘𝐺) → (((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃) ↔ 𝑣 = ⟨“𝑃”⟩))
19 vex 3402 . . . . . . . . 9 𝑣 ∈ V
20 eleq1w 2815 . . . . . . . . . . 11 (𝑤 = 𝑣 → (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑣 ∈ Word (Vtx‘𝐺)))
21 fveqeq2 6685 . . . . . . . . . . 11 (𝑤 = 𝑣 → ((♯‘𝑤) = 1 ↔ (♯‘𝑣) = 1))
2220, 21anbi12d 634 . . . . . . . . . 10 (𝑤 = 𝑣 → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ↔ (𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1)))
23 fveq1 6675 . . . . . . . . . . 11 (𝑤 = 𝑣 → (𝑤‘0) = (𝑣‘0))
2423eqeq1d 2740 . . . . . . . . . 10 (𝑤 = 𝑣 → ((𝑤‘0) = 𝑃 ↔ (𝑣‘0) = 𝑃))
2522, 24anbi12d 634 . . . . . . . . 9 (𝑤 = 𝑣 → (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃) ↔ ((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃)))
2619, 25elab 3573 . . . . . . . 8 (𝑣 ∈ {𝑤 ∣ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)} ↔ ((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃))
27 velsn 4532 . . . . . . . 8 (𝑣 ∈ {⟨“𝑃”⟩} ↔ 𝑣 = ⟨“𝑃”⟩)
2818, 26, 273bitr4g 317 . . . . . . 7 (𝑃 ∈ (Vtx‘𝐺) → (𝑣 ∈ {𝑤 ∣ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)} ↔ 𝑣 ∈ {⟨“𝑃”⟩}))
2928, 3eleq2s 2851 . . . . . 6 (𝑃𝑉 → (𝑣 ∈ {𝑤 ∣ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)} ↔ 𝑣 ∈ {⟨“𝑃”⟩}))
3029eqrdv 2736 . . . . 5 (𝑃𝑉 → {𝑤 ∣ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)} = {⟨“𝑃”⟩})
3130adantl 485 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → {𝑤 ∣ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)} = {⟨“𝑃”⟩})
328, 15, 313eqtrd 2777 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → {𝑤 ∈ (0 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {⟨“𝑃”⟩})
3332fveq2d 6680 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (♯‘{𝑤 ∈ (0 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (♯‘{⟨“𝑃”⟩}))
34 s1cl 14047 . . . 4 (𝑃𝑉 → ⟨“𝑃”⟩ ∈ Word 𝑉)
35 hashsng 13824 . . . 4 (⟨“𝑃”⟩ ∈ Word 𝑉 → (♯‘{⟨“𝑃”⟩}) = 1)
3634, 35syl 17 . . 3 (𝑃𝑉 → (♯‘{⟨“𝑃”⟩}) = 1)
3736adantl 485 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (♯‘{⟨“𝑃”⟩}) = 1)
386, 33, 373eqtrd 2777 1 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (𝑃𝐿0) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1088   = wceq 1542  wcel 2114  {cab 2716  {crab 3057  {csn 4516  cfv 6339  (class class class)co 7172  cmpo 7174  0cc0 10617  1c1 10618  0cn0 11978  chash 13784  Word cword 13957  ⟨“cs1 14040  Vtxcvtx 26943  USPGraphcuspgr 27095   WWalksN cwwlksn 27766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7481  ax-cnex 10673  ax-resscn 10674  ax-1cn 10675  ax-icn 10676  ax-addcl 10677  ax-addrcl 10678  ax-mulcl 10679  ax-mulrcl 10680  ax-mulcom 10681  ax-addass 10682  ax-mulass 10683  ax-distr 10684  ax-i2m1 10685  ax-1ne0 10686  ax-1rid 10687  ax-rnegex 10688  ax-rrecex 10689  ax-cnre 10690  ax-pre-lttri 10691  ax-pre-lttrn 10692  ax-pre-ltadd 10693  ax-pre-mulgt0 10694
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-int 4837  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7129  df-ov 7175  df-oprab 7176  df-mpo 7177  df-om 7602  df-1st 7716  df-2nd 7717  df-wrecs 7978  df-recs 8039  df-rdg 8077  df-1o 8133  df-er 8322  df-map 8441  df-en 8558  df-dom 8559  df-sdom 8560  df-fin 8561  df-card 9443  df-pnf 10757  df-mnf 10758  df-xr 10759  df-ltxr 10760  df-le 10761  df-sub 10952  df-neg 10953  df-nn 11719  df-n0 11979  df-xnn0 12051  df-z 12065  df-uz 12327  df-fz 12984  df-fzo 13127  df-hash 13785  df-word 13958  df-s1 14041  df-wwlks 27770  df-wwlksn 27771
This theorem is referenced by:  rusgrnumwwlk  27915
  Copyright terms: Public domain W3C validator