MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlkb0 Structured version   Visualization version   GIF version

Theorem rusgrnumwwlkb0 28336
Description: Induction base 0 for rusgrnumwwlk 28340. Here, we do not need the regularity of the graph yet. (Contributed by Alexander van der Vekens, 24-Jul-2018.) (Revised by AV, 7-May-2021.)
Hypotheses
Ref Expression
rusgrnumwwlk.v 𝑉 = (Vtx‘𝐺)
rusgrnumwwlk.l 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
Assertion
Ref Expression
rusgrnumwwlkb0 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (𝑃𝐿0) = 1)
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑃,𝑛,𝑣,𝑤   𝑛,𝑉,𝑣,𝑤
Allowed substitution hints:   𝐿(𝑤,𝑣,𝑛)

Proof of Theorem rusgrnumwwlkb0
StepHypRef Expression
1 simpr 485 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → 𝑃𝑉)
2 0nn0 12248 . . 3 0 ∈ ℕ0
3 rusgrnumwwlk.v . . . 4 𝑉 = (Vtx‘𝐺)
4 rusgrnumwwlk.l . . . 4 𝐿 = (𝑣𝑉, 𝑛 ∈ ℕ0 ↦ (♯‘{𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}))
53, 4rusgrnumwwlklem 28335 . . 3 ((𝑃𝑉 ∧ 0 ∈ ℕ0) → (𝑃𝐿0) = (♯‘{𝑤 ∈ (0 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}))
61, 2, 5sylancl 586 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (𝑃𝐿0) = (♯‘{𝑤 ∈ (0 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}))
7 df-rab 3073 . . . . 5 {𝑤 ∈ (0 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∣ (𝑤 ∈ (0 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑃)}
87a1i 11 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → {𝑤 ∈ (0 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {𝑤 ∣ (𝑤 ∈ (0 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑃)})
9 wwlksn0s 28226 . . . . . . . . 9 (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1}
109a1i 11 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (0 WWalksN 𝐺) = {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1})
1110eleq2d 2824 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (𝑤 ∈ (0 WWalksN 𝐺) ↔ 𝑤 ∈ {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1}))
12 rabid 3310 . . . . . . 7 (𝑤 ∈ {𝑤 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑤) = 1} ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1))
1311, 12bitrdi 287 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (𝑤 ∈ (0 WWalksN 𝐺) ↔ (𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1)))
1413anbi1d 630 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → ((𝑤 ∈ (0 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑃) ↔ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)))
1514abbidv 2807 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → {𝑤 ∣ (𝑤 ∈ (0 WWalksN 𝐺) ∧ (𝑤‘0) = 𝑃)} = {𝑤 ∣ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)})
16 wrdl1s1 14319 . . . . . . . . 9 (𝑃 ∈ (Vtx‘𝐺) → (𝑣 = ⟨“𝑃”⟩ ↔ (𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1 ∧ (𝑣‘0) = 𝑃)))
17 df-3an 1088 . . . . . . . . 9 ((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1 ∧ (𝑣‘0) = 𝑃) ↔ ((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃))
1816, 17bitr2di 288 . . . . . . . 8 (𝑃 ∈ (Vtx‘𝐺) → (((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃) ↔ 𝑣 = ⟨“𝑃”⟩))
19 vex 3436 . . . . . . . . 9 𝑣 ∈ V
20 eleq1w 2821 . . . . . . . . . . 11 (𝑤 = 𝑣 → (𝑤 ∈ Word (Vtx‘𝐺) ↔ 𝑣 ∈ Word (Vtx‘𝐺)))
21 fveqeq2 6783 . . . . . . . . . . 11 (𝑤 = 𝑣 → ((♯‘𝑤) = 1 ↔ (♯‘𝑣) = 1))
2220, 21anbi12d 631 . . . . . . . . . 10 (𝑤 = 𝑣 → ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ↔ (𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1)))
23 fveq1 6773 . . . . . . . . . . 11 (𝑤 = 𝑣 → (𝑤‘0) = (𝑣‘0))
2423eqeq1d 2740 . . . . . . . . . 10 (𝑤 = 𝑣 → ((𝑤‘0) = 𝑃 ↔ (𝑣‘0) = 𝑃))
2522, 24anbi12d 631 . . . . . . . . 9 (𝑤 = 𝑣 → (((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃) ↔ ((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃)))
2619, 25elab 3609 . . . . . . . 8 (𝑣 ∈ {𝑤 ∣ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)} ↔ ((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃))
27 velsn 4577 . . . . . . . 8 (𝑣 ∈ {⟨“𝑃”⟩} ↔ 𝑣 = ⟨“𝑃”⟩)
2818, 26, 273bitr4g 314 . . . . . . 7 (𝑃 ∈ (Vtx‘𝐺) → (𝑣 ∈ {𝑤 ∣ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)} ↔ 𝑣 ∈ {⟨“𝑃”⟩}))
2928, 3eleq2s 2857 . . . . . 6 (𝑃𝑉 → (𝑣 ∈ {𝑤 ∣ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)} ↔ 𝑣 ∈ {⟨“𝑃”⟩}))
3029eqrdv 2736 . . . . 5 (𝑃𝑉 → {𝑤 ∣ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)} = {⟨“𝑃”⟩})
3130adantl 482 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → {𝑤 ∣ ((𝑤 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑤) = 1) ∧ (𝑤‘0) = 𝑃)} = {⟨“𝑃”⟩})
328, 15, 313eqtrd 2782 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → {𝑤 ∈ (0 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃} = {⟨“𝑃”⟩})
3332fveq2d 6778 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (♯‘{𝑤 ∈ (0 WWalksN 𝐺) ∣ (𝑤‘0) = 𝑃}) = (♯‘{⟨“𝑃”⟩}))
34 s1cl 14307 . . . 4 (𝑃𝑉 → ⟨“𝑃”⟩ ∈ Word 𝑉)
35 hashsng 14084 . . . 4 (⟨“𝑃”⟩ ∈ Word 𝑉 → (♯‘{⟨“𝑃”⟩}) = 1)
3634, 35syl 17 . . 3 (𝑃𝑉 → (♯‘{⟨“𝑃”⟩}) = 1)
3736adantl 482 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (♯‘{⟨“𝑃”⟩}) = 1)
386, 33, 373eqtrd 2782 1 ((𝐺 ∈ USPGraph ∧ 𝑃𝑉) → (𝑃𝐿0) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  {cab 2715  {crab 3068  {csn 4561  cfv 6433  (class class class)co 7275  cmpo 7277  0cc0 10871  1c1 10872  0cn0 12233  chash 14044  Word cword 14217  ⟨“cs1 14300  Vtxcvtx 27366  USPGraphcuspgr 27518   WWalksN cwwlksn 28191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383  df-hash 14045  df-word 14218  df-s1 14301  df-wwlks 28195  df-wwlksn 28196
This theorem is referenced by:  rusgrnumwwlk  28340
  Copyright terms: Public domain W3C validator