MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rusgrnumwwlkb0 Structured version   Visualization version   GIF version

Theorem rusgrnumwwlkb0 29222
Description: Induction base 0 for rusgrnumwwlk 29226. Here, we do not need the regularity of the graph yet. (Contributed by Alexander van der Vekens, 24-Jul-2018.) (Revised by AV, 7-May-2021.)
Hypotheses
Ref Expression
rusgrnumwwlk.v 𝑉 = (Vtx‘𝐺)
rusgrnumwwlk.l 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↩ (♯‘{𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑣}))
Assertion
Ref Expression
rusgrnumwwlkb0 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → (𝑃𝐿0) = 1)
Distinct variable groups:   𝑛,𝐺,𝑣,𝑀   𝑃,𝑛,𝑣,𝑀   𝑛,𝑉,𝑣,𝑀
Allowed substitution hints:   𝐿(𝑀,𝑣,𝑛)

Proof of Theorem rusgrnumwwlkb0
StepHypRef Expression
1 simpr 485 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → 𝑃 ∈ 𝑉)
2 0nn0 12486 . . 3 0 ∈ ℕ0
3 rusgrnumwwlk.v . . . 4 𝑉 = (Vtx‘𝐺)
4 rusgrnumwwlk.l . . . 4 𝐿 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ0 ↩ (♯‘{𝑀 ∈ (𝑛 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑣}))
53, 4rusgrnumwwlklem 29221 . . 3 ((𝑃 ∈ 𝑉 ∧ 0 ∈ ℕ0) → (𝑃𝐿0) = (♯‘{𝑀 ∈ (0 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃}))
61, 2, 5sylancl 586 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → (𝑃𝐿0) = (♯‘{𝑀 ∈ (0 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃}))
7 df-rab 3433 . . . . 5 {𝑀 ∈ (0 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃} = {𝑀 ∣ (𝑀 ∈ (0 WWalksN 𝐺) ∧ (𝑀‘0) = 𝑃)}
87a1i 11 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → {𝑀 ∈ (0 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃} = {𝑀 ∣ (𝑀 ∈ (0 WWalksN 𝐺) ∧ (𝑀‘0) = 𝑃)})
9 wwlksn0s 29112 . . . . . . . . 9 (0 WWalksN 𝐺) = {𝑀 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑀) = 1}
109a1i 11 . . . . . . . 8 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → (0 WWalksN 𝐺) = {𝑀 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑀) = 1})
1110eleq2d 2819 . . . . . . 7 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → (𝑀 ∈ (0 WWalksN 𝐺) ↔ 𝑀 ∈ {𝑀 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑀) = 1}))
12 rabid 3452 . . . . . . 7 (𝑀 ∈ {𝑀 ∈ Word (Vtx‘𝐺) ∣ (♯‘𝑀) = 1} ↔ (𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1))
1311, 12bitrdi 286 . . . . . 6 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → (𝑀 ∈ (0 WWalksN 𝐺) ↔ (𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1)))
1413anbi1d 630 . . . . 5 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → ((𝑀 ∈ (0 WWalksN 𝐺) ∧ (𝑀‘0) = 𝑃) ↔ ((𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1) ∧ (𝑀‘0) = 𝑃)))
1514abbidv 2801 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → {𝑀 ∣ (𝑀 ∈ (0 WWalksN 𝐺) ∧ (𝑀‘0) = 𝑃)} = {𝑀 ∣ ((𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1) ∧ (𝑀‘0) = 𝑃)})
16 wrdl1s1 14563 . . . . . . . . 9 (𝑃 ∈ (Vtx‘𝐺) → (𝑣 = ⟚“𝑃”⟩ ↔ (𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1 ∧ (𝑣‘0) = 𝑃)))
17 df-3an 1089 . . . . . . . . 9 ((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1 ∧ (𝑣‘0) = 𝑃) ↔ ((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃))
1816, 17bitr2di 287 . . . . . . . 8 (𝑃 ∈ (Vtx‘𝐺) → (((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃) ↔ 𝑣 = ⟚“𝑃”⟩))
19 vex 3478 . . . . . . . . 9 𝑣 ∈ V
20 eleq1w 2816 . . . . . . . . . . 11 (𝑀 = 𝑣 → (𝑀 ∈ Word (Vtx‘𝐺) ↔ 𝑣 ∈ Word (Vtx‘𝐺)))
21 fveqeq2 6900 . . . . . . . . . . 11 (𝑀 = 𝑣 → ((♯‘𝑀) = 1 ↔ (♯‘𝑣) = 1))
2220, 21anbi12d 631 . . . . . . . . . 10 (𝑀 = 𝑣 → ((𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1) ↔ (𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1)))
23 fveq1 6890 . . . . . . . . . . 11 (𝑀 = 𝑣 → (𝑀‘0) = (𝑣‘0))
2423eqeq1d 2734 . . . . . . . . . 10 (𝑀 = 𝑣 → ((𝑀‘0) = 𝑃 ↔ (𝑣‘0) = 𝑃))
2522, 24anbi12d 631 . . . . . . . . 9 (𝑀 = 𝑣 → (((𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1) ∧ (𝑀‘0) = 𝑃) ↔ ((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃)))
2619, 25elab 3668 . . . . . . . 8 (𝑣 ∈ {𝑀 ∣ ((𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1) ∧ (𝑀‘0) = 𝑃)} ↔ ((𝑣 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑣) = 1) ∧ (𝑣‘0) = 𝑃))
27 velsn 4644 . . . . . . . 8 (𝑣 ∈ {⟚“𝑃”⟩} ↔ 𝑣 = ⟚“𝑃”⟩)
2818, 26, 273bitr4g 313 . . . . . . 7 (𝑃 ∈ (Vtx‘𝐺) → (𝑣 ∈ {𝑀 ∣ ((𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1) ∧ (𝑀‘0) = 𝑃)} ↔ 𝑣 ∈ {⟚“𝑃”⟩}))
2928, 3eleq2s 2851 . . . . . 6 (𝑃 ∈ 𝑉 → (𝑣 ∈ {𝑀 ∣ ((𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1) ∧ (𝑀‘0) = 𝑃)} ↔ 𝑣 ∈ {⟚“𝑃”⟩}))
3029eqrdv 2730 . . . . 5 (𝑃 ∈ 𝑉 → {𝑀 ∣ ((𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1) ∧ (𝑀‘0) = 𝑃)} = {⟚“𝑃”⟩})
3130adantl 482 . . . 4 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → {𝑀 ∣ ((𝑀 ∈ Word (Vtx‘𝐺) ∧ (♯‘𝑀) = 1) ∧ (𝑀‘0) = 𝑃)} = {⟚“𝑃”⟩})
328, 15, 313eqtrd 2776 . . 3 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → {𝑀 ∈ (0 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃} = {⟚“𝑃”⟩})
3332fveq2d 6895 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → (♯‘{𝑀 ∈ (0 WWalksN 𝐺) ∣ (𝑀‘0) = 𝑃}) = (♯‘{⟚“𝑃”⟩}))
34 s1cl 14551 . . . 4 (𝑃 ∈ 𝑉 → ⟚“𝑃”⟩ ∈ Word 𝑉)
35 hashsng 14328 . . . 4 (⟚“𝑃”⟩ ∈ Word 𝑉 → (♯‘{⟚“𝑃”⟩}) = 1)
3634, 35syl 17 . . 3 (𝑃 ∈ 𝑉 → (♯‘{⟚“𝑃”⟩}) = 1)
3736adantl 482 . 2 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → (♯‘{⟚“𝑃”⟩}) = 1)
386, 33, 373eqtrd 2776 1 ((𝐺 ∈ USPGraph ∧ 𝑃 ∈ 𝑉) → (𝑃𝐿0) = 1)
Colors of variables: wff setvar class
Syntax hints:   → wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  {cab 2709  {crab 3432  {csn 4628  â€˜cfv 6543  (class class class)co 7408   ∈ cmpo 7410  0cc0 11109  1c1 11110  â„•0cn0 12471  â™¯chash 14289  Word cword 14463  âŸšâ€œcs1 14544  Vtxcvtx 28253  USPGraphcuspgr 28405   WWalksN cwwlksn 29077
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-n0 12472  df-xnn0 12544  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-hash 14290  df-word 14464  df-s1 14545  df-wwlks 29081  df-wwlksn 29082
This theorem is referenced by:  rusgrnumwwlk  29226
  Copyright terms: Public domain W3C validator