| Step | Hyp | Ref
| Expression |
| 1 | | dfcgra2.p |
. . 3
⊢ 𝑃 = (Base‘𝐺) |
| 2 | | dfcgra2.i |
. . 3
⊢ 𝐼 = (Itv‘𝐺) |
| 3 | | eqid 2736 |
. . 3
⊢
(hlG‘𝐺) =
(hlG‘𝐺) |
| 4 | | dfcgra2.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 5 | 4 | ad3antrrr 730 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐺 ∈ TarskiG) |
| 6 | | sacgr.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| 7 | 6 | ad3antrrr 730 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑋 ∈ 𝑃) |
| 8 | | dfcgra2.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| 9 | 8 | ad3antrrr 730 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐵 ∈ 𝑃) |
| 10 | | dfcgra2.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| 11 | 10 | ad3antrrr 730 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐶 ∈ 𝑃) |
| 12 | | sacgr.y |
. . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| 13 | 12 | ad3antrrr 730 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑌 ∈ 𝑃) |
| 14 | | dfcgra2.e |
. . . 4
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| 15 | 14 | ad3antrrr 730 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ 𝑃) |
| 16 | | dfcgra2.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| 17 | 16 | ad3antrrr 730 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐹 ∈ 𝑃) |
| 18 | | dfcgra2.m |
. . . 4
⊢ − =
(dist‘𝐺) |
| 19 | | eqid 2736 |
. . . 4
⊢
(LineG‘𝐺) =
(LineG‘𝐺) |
| 20 | | eqid 2736 |
. . . 4
⊢
(pInvG‘𝐺) =
(pInvG‘𝐺) |
| 21 | | eqid 2736 |
. . . 4
⊢
((pInvG‘𝐺)‘𝐸) = ((pInvG‘𝐺)‘𝐸) |
| 22 | | simpllr 775 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑥 ∈ 𝑃) |
| 23 | 1, 18, 2, 19, 20, 5, 15, 21, 22 | mircl 28645 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐸)‘𝑥) ∈ 𝑃) |
| 24 | | simplr 768 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑦 ∈ 𝑃) |
| 25 | | eqid 2736 |
. . . . . . 7
⊢
((pInvG‘𝐺)‘𝐵) = ((pInvG‘𝐺)‘𝐵) |
| 26 | 1, 18, 2, 19, 20, 4, 8, 25, 6 | mirmir 28646 |
. . . . . 6
⊢ (𝜑 → (((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋)) = 𝑋) |
| 27 | | eqidd 2737 |
. . . . . 6
⊢ (𝜑 → 𝐵 = 𝐵) |
| 28 | | eqidd 2737 |
. . . . . 6
⊢ (𝜑 → 𝐶 = 𝐶) |
| 29 | 26, 27, 28 | s3eqd 14888 |
. . . . 5
⊢ (𝜑 →
〈“(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))𝐵𝐶”〉 = 〈“𝑋𝐵𝐶”〉) |
| 30 | 29 | ad3antrrr 730 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 〈“(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))𝐵𝐶”〉 = 〈“𝑋𝐵𝐶”〉) |
| 31 | | eqid 2736 |
. . . . 5
⊢
(cgrG‘𝐺) =
(cgrG‘𝐺) |
| 32 | 1, 18, 2, 19, 20, 4, 8, 25, 6 | mircl 28645 |
. . . . . 6
⊢ (𝜑 → (((pInvG‘𝐺)‘𝐵)‘𝑋) ∈ 𝑃) |
| 33 | 32 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐵)‘𝑋) ∈ 𝑃) |
| 34 | | sacgr.4 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 ≠ 𝑋) |
| 35 | 34 | necomd 2988 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ≠ 𝐵) |
| 36 | 1, 18, 2, 19, 20, 4, 8, 25, 6,
35 | mirne 28651 |
. . . . . 6
⊢ (𝜑 → (((pInvG‘𝐺)‘𝐵)‘𝑋) ≠ 𝐵) |
| 37 | 36 | ad3antrrr 730 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐵)‘𝑋) ≠ 𝐵) |
| 38 | | simpr1 1195 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉) |
| 39 | 1, 18, 2, 19, 20, 5, 31, 25, 21, 33, 9, 22, 15, 11, 24, 37, 38 | mirtrcgr 28667 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 〈“(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))𝐵𝐶”〉(cgrG‘𝐺)〈“(((pInvG‘𝐺)‘𝐸)‘𝑥)𝐸𝑦”〉) |
| 40 | 30, 39 | eqbrtrrd 5148 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 〈“𝑋𝐵𝐶”〉(cgrG‘𝐺)〈“(((pInvG‘𝐺)‘𝐸)‘𝑥)𝐸𝑦”〉) |
| 41 | | sacgr.5 |
. . . . . . 7
⊢ (𝜑 → 𝐸 ≠ 𝑌) |
| 42 | 41 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ≠ 𝑌) |
| 43 | 42 | necomd 2988 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑌 ≠ 𝐸) |
| 44 | | dfcgra2.d |
. . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| 45 | 44 | ad3antrrr 730 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐷 ∈ 𝑃) |
| 46 | | simpr2 1196 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑥((hlG‘𝐺)‘𝐸)𝐷) |
| 47 | 1, 2, 3, 22, 45, 15, 5, 46 | hlne1 28589 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑥 ≠ 𝐸) |
| 48 | 1, 18, 2, 19, 20, 5, 15, 21, 22, 47 | mirne 28651 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐸)‘𝑥) ≠ 𝐸) |
| 49 | 1, 2, 3, 22, 45, 15, 5, 46 | hlcomd 28588 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐷((hlG‘𝐺)‘𝐸)𝑥) |
| 50 | | sacgr.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝑌)) |
| 51 | 50 | ad3antrrr 730 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝐷𝐼𝑌)) |
| 52 | 1, 2, 3, 45, 22, 13, 5, 15, 49, 51 | btwnhl 28598 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝑥𝐼𝑌)) |
| 53 | 1, 18, 2, 5, 22, 15, 13, 52 | tgbtwncom 28472 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝑌𝐼𝑥)) |
| 54 | 1, 18, 2, 19, 20, 5, 15, 21, 22 | mirmir 28646 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐸)‘(((pInvG‘𝐺)‘𝐸)‘𝑥)) = 𝑥) |
| 55 | 54 | oveq2d 7426 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (𝑌𝐼(((pInvG‘𝐺)‘𝐸)‘(((pInvG‘𝐺)‘𝐸)‘𝑥))) = (𝑌𝐼𝑥)) |
| 56 | 53, 55 | eleqtrrd 2838 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝑌𝐼(((pInvG‘𝐺)‘𝐸)‘(((pInvG‘𝐺)‘𝐸)‘𝑥)))) |
| 57 | 1, 18, 2, 19, 20, 5, 21, 3, 15, 13, 23, 15, 43, 48, 56 | mirhl2 28665 |
. . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑌((hlG‘𝐺)‘𝐸)(((pInvG‘𝐺)‘𝐸)‘𝑥)) |
| 58 | 1, 2, 3, 13, 23, 15, 5, 57 | hlcomd 28588 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐸)‘𝑥)((hlG‘𝐺)‘𝐸)𝑌) |
| 59 | | simpr3 1197 |
. . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑦((hlG‘𝐺)‘𝐸)𝐹) |
| 60 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 23, 24, 40, 58, 59 | iscgrad 28795 |
. 2
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 〈“𝑋𝐵𝐶”〉(cgrA‘𝐺)〈“𝑌𝐸𝐹”〉) |
| 61 | | dfcgra2.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| 62 | | sacgr.1 |
. . . . . . 7
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
| 63 | 1, 2, 3, 4, 61, 8,
10, 44, 14, 16, 62 | cgrane2 28797 |
. . . . . 6
⊢ (𝜑 → 𝐵 ≠ 𝐶) |
| 64 | 1, 2, 4, 3, 32, 8,
10, 36, 63 | cgraid 28803 |
. . . . 5
⊢ (𝜑 →
〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrA‘𝐺)〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉) |
| 65 | 1, 2, 3, 4, 61, 8,
10, 44, 14, 16, 62 | cgrane1 28796 |
. . . . . 6
⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 66 | | sacgr.2 |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝑋)) |
| 67 | 26 | oveq2d 7426 |
. . . . . . 7
⊢ (𝜑 → (𝐴𝐼(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))) = (𝐴𝐼𝑋)) |
| 68 | 66, 67 | eleqtrrd 2838 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋)))) |
| 69 | 1, 18, 2, 19, 20, 4, 25, 3, 8,
61, 32, 61, 65, 36, 68 | mirhl2 28665 |
. . . . 5
⊢ (𝜑 → 𝐴((hlG‘𝐺)‘𝐵)(((pInvG‘𝐺)‘𝐵)‘𝑋)) |
| 70 | 1, 2, 3, 4, 32, 8,
10, 32, 8, 10, 64, 61, 69 | cgrahl1 28800 |
. . . 4
⊢ (𝜑 →
〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrA‘𝐺)〈“𝐴𝐵𝐶”〉) |
| 71 | 1, 2, 4, 3, 32, 8,
10, 61, 8, 10, 70, 44, 14, 16, 62 | cgratr 28807 |
. . 3
⊢ (𝜑 →
〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
| 72 | 1, 2, 3, 4, 32, 8,
10, 44, 14, 16 | iscgra 28793 |
. . 3
⊢ (𝜑 →
(〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹))) |
| 73 | 71, 72 | mpbid 232 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) |
| 74 | 60, 73 | r19.29vva 3205 |
1
⊢ (𝜑 → 〈“𝑋𝐵𝐶”〉(cgrA‘𝐺)〈“𝑌𝐸𝐹”〉) |