| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | dfcgra2.p | . . 3
⊢ 𝑃 = (Base‘𝐺) | 
| 2 |  | dfcgra2.i | . . 3
⊢ 𝐼 = (Itv‘𝐺) | 
| 3 |  | eqid 2736 | . . 3
⊢
(hlG‘𝐺) =
(hlG‘𝐺) | 
| 4 |  | dfcgra2.g | . . . 4
⊢ (𝜑 → 𝐺 ∈ TarskiG) | 
| 5 | 4 | ad3antrrr 730 | . . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐺 ∈ TarskiG) | 
| 6 |  | sacgr.x | . . . 4
⊢ (𝜑 → 𝑋 ∈ 𝑃) | 
| 7 | 6 | ad3antrrr 730 | . . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑋 ∈ 𝑃) | 
| 8 |  | dfcgra2.b | . . . 4
⊢ (𝜑 → 𝐵 ∈ 𝑃) | 
| 9 | 8 | ad3antrrr 730 | . . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐵 ∈ 𝑃) | 
| 10 |  | dfcgra2.c | . . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑃) | 
| 11 | 10 | ad3antrrr 730 | . . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐶 ∈ 𝑃) | 
| 12 |  | sacgr.y | . . . 4
⊢ (𝜑 → 𝑌 ∈ 𝑃) | 
| 13 | 12 | ad3antrrr 730 | . . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑌 ∈ 𝑃) | 
| 14 |  | dfcgra2.e | . . . 4
⊢ (𝜑 → 𝐸 ∈ 𝑃) | 
| 15 | 14 | ad3antrrr 730 | . . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ 𝑃) | 
| 16 |  | dfcgra2.f | . . . 4
⊢ (𝜑 → 𝐹 ∈ 𝑃) | 
| 17 | 16 | ad3antrrr 730 | . . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐹 ∈ 𝑃) | 
| 18 |  | dfcgra2.m | . . . 4
⊢  − =
(dist‘𝐺) | 
| 19 |  | eqid 2736 | . . . 4
⊢
(LineG‘𝐺) =
(LineG‘𝐺) | 
| 20 |  | eqid 2736 | . . . 4
⊢
(pInvG‘𝐺) =
(pInvG‘𝐺) | 
| 21 |  | eqid 2736 | . . . 4
⊢
((pInvG‘𝐺)‘𝐸) = ((pInvG‘𝐺)‘𝐸) | 
| 22 |  | simpllr 775 | . . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑥 ∈ 𝑃) | 
| 23 | 1, 18, 2, 19, 20, 5, 15, 21, 22 | mircl 28670 | . . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐸)‘𝑥) ∈ 𝑃) | 
| 24 |  | simplr 768 | . . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑦 ∈ 𝑃) | 
| 25 |  | eqid 2736 | . . . . . . 7
⊢
((pInvG‘𝐺)‘𝐵) = ((pInvG‘𝐺)‘𝐵) | 
| 26 | 1, 18, 2, 19, 20, 4, 8, 25, 6 | mirmir 28671 | . . . . . 6
⊢ (𝜑 → (((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋)) = 𝑋) | 
| 27 |  | eqidd 2737 | . . . . . 6
⊢ (𝜑 → 𝐵 = 𝐵) | 
| 28 |  | eqidd 2737 | . . . . . 6
⊢ (𝜑 → 𝐶 = 𝐶) | 
| 29 | 26, 27, 28 | s3eqd 14904 | . . . . 5
⊢ (𝜑 →
〈“(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))𝐵𝐶”〉 = 〈“𝑋𝐵𝐶”〉) | 
| 30 | 29 | ad3antrrr 730 | . . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 〈“(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))𝐵𝐶”〉 = 〈“𝑋𝐵𝐶”〉) | 
| 31 |  | eqid 2736 | . . . . 5
⊢
(cgrG‘𝐺) =
(cgrG‘𝐺) | 
| 32 | 1, 18, 2, 19, 20, 4, 8, 25, 6 | mircl 28670 | . . . . . 6
⊢ (𝜑 → (((pInvG‘𝐺)‘𝐵)‘𝑋) ∈ 𝑃) | 
| 33 | 32 | ad3antrrr 730 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐵)‘𝑋) ∈ 𝑃) | 
| 34 |  | sacgr.4 | . . . . . . . 8
⊢ (𝜑 → 𝐵 ≠ 𝑋) | 
| 35 | 34 | necomd 2995 | . . . . . . 7
⊢ (𝜑 → 𝑋 ≠ 𝐵) | 
| 36 | 1, 18, 2, 19, 20, 4, 8, 25, 6,
35 | mirne 28676 | . . . . . 6
⊢ (𝜑 → (((pInvG‘𝐺)‘𝐵)‘𝑋) ≠ 𝐵) | 
| 37 | 36 | ad3antrrr 730 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐵)‘𝑋) ≠ 𝐵) | 
| 38 |  | simpr1 1194 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉) | 
| 39 | 1, 18, 2, 19, 20, 5, 31, 25, 21, 33, 9, 22, 15, 11, 24, 37, 38 | mirtrcgr 28692 | . . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 〈“(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))𝐵𝐶”〉(cgrG‘𝐺)〈“(((pInvG‘𝐺)‘𝐸)‘𝑥)𝐸𝑦”〉) | 
| 40 | 30, 39 | eqbrtrrd 5166 | . . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 〈“𝑋𝐵𝐶”〉(cgrG‘𝐺)〈“(((pInvG‘𝐺)‘𝐸)‘𝑥)𝐸𝑦”〉) | 
| 41 |  | sacgr.5 | . . . . . . 7
⊢ (𝜑 → 𝐸 ≠ 𝑌) | 
| 42 | 41 | ad3antrrr 730 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ≠ 𝑌) | 
| 43 | 42 | necomd 2995 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑌 ≠ 𝐸) | 
| 44 |  | dfcgra2.d | . . . . . . . 8
⊢ (𝜑 → 𝐷 ∈ 𝑃) | 
| 45 | 44 | ad3antrrr 730 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐷 ∈ 𝑃) | 
| 46 |  | simpr2 1195 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑥((hlG‘𝐺)‘𝐸)𝐷) | 
| 47 | 1, 2, 3, 22, 45, 15, 5, 46 | hlne1 28614 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑥 ≠ 𝐸) | 
| 48 | 1, 18, 2, 19, 20, 5, 15, 21, 22, 47 | mirne 28676 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐸)‘𝑥) ≠ 𝐸) | 
| 49 | 1, 2, 3, 22, 45, 15, 5, 46 | hlcomd 28613 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐷((hlG‘𝐺)‘𝐸)𝑥) | 
| 50 |  | sacgr.3 | . . . . . . . . 9
⊢ (𝜑 → 𝐸 ∈ (𝐷𝐼𝑌)) | 
| 51 | 50 | ad3antrrr 730 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝐷𝐼𝑌)) | 
| 52 | 1, 2, 3, 45, 22, 13, 5, 15, 49, 51 | btwnhl 28623 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝑥𝐼𝑌)) | 
| 53 | 1, 18, 2, 5, 22, 15, 13, 52 | tgbtwncom 28497 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝑌𝐼𝑥)) | 
| 54 | 1, 18, 2, 19, 20, 5, 15, 21, 22 | mirmir 28671 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐸)‘(((pInvG‘𝐺)‘𝐸)‘𝑥)) = 𝑥) | 
| 55 | 54 | oveq2d 7448 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (𝑌𝐼(((pInvG‘𝐺)‘𝐸)‘(((pInvG‘𝐺)‘𝐸)‘𝑥))) = (𝑌𝐼𝑥)) | 
| 56 | 53, 55 | eleqtrrd 2843 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝑌𝐼(((pInvG‘𝐺)‘𝐸)‘(((pInvG‘𝐺)‘𝐸)‘𝑥)))) | 
| 57 | 1, 18, 2, 19, 20, 5, 21, 3, 15, 13, 23, 15, 43, 48, 56 | mirhl2 28690 | . . . 4
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑌((hlG‘𝐺)‘𝐸)(((pInvG‘𝐺)‘𝐸)‘𝑥)) | 
| 58 | 1, 2, 3, 13, 23, 15, 5, 57 | hlcomd 28613 | . . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐸)‘𝑥)((hlG‘𝐺)‘𝐸)𝑌) | 
| 59 |  | simpr3 1196 | . . 3
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑦((hlG‘𝐺)‘𝐸)𝐹) | 
| 60 | 1, 2, 3, 5, 7, 9, 11, 13, 15, 17, 23, 24, 40, 58, 59 | iscgrad 28820 | . 2
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑃) ∧ 𝑦 ∈ 𝑃) ∧ (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 〈“𝑋𝐵𝐶”〉(cgrA‘𝐺)〈“𝑌𝐸𝐹”〉) | 
| 61 |  | dfcgra2.a | . . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑃) | 
| 62 |  | sacgr.1 | . . . . . . 7
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) | 
| 63 | 1, 2, 3, 4, 61, 8,
10, 44, 14, 16, 62 | cgrane2 28822 | . . . . . 6
⊢ (𝜑 → 𝐵 ≠ 𝐶) | 
| 64 | 1, 2, 4, 3, 32, 8,
10, 36, 63 | cgraid 28828 | . . . . 5
⊢ (𝜑 →
〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrA‘𝐺)〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉) | 
| 65 | 1, 2, 3, 4, 61, 8,
10, 44, 14, 16, 62 | cgrane1 28821 | . . . . . 6
⊢ (𝜑 → 𝐴 ≠ 𝐵) | 
| 66 |  | sacgr.2 | . . . . . . 7
⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼𝑋)) | 
| 67 | 26 | oveq2d 7448 | . . . . . . 7
⊢ (𝜑 → (𝐴𝐼(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))) = (𝐴𝐼𝑋)) | 
| 68 | 66, 67 | eleqtrrd 2843 | . . . . . 6
⊢ (𝜑 → 𝐵 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋)))) | 
| 69 | 1, 18, 2, 19, 20, 4, 25, 3, 8,
61, 32, 61, 65, 36, 68 | mirhl2 28690 | . . . . 5
⊢ (𝜑 → 𝐴((hlG‘𝐺)‘𝐵)(((pInvG‘𝐺)‘𝐵)‘𝑋)) | 
| 70 | 1, 2, 3, 4, 32, 8,
10, 32, 8, 10, 64, 61, 69 | cgrahl1 28825 | . . . 4
⊢ (𝜑 →
〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrA‘𝐺)〈“𝐴𝐵𝐶”〉) | 
| 71 | 1, 2, 4, 3, 32, 8,
10, 61, 8, 10, 70, 44, 14, 16, 62 | cgratr 28832 | . . 3
⊢ (𝜑 →
〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) | 
| 72 | 1, 2, 3, 4, 32, 8,
10, 44, 14, 16 | iscgra 28818 | . . 3
⊢ (𝜑 →
(〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹))) | 
| 73 | 71, 72 | mpbid 232 | . 2
⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷 ∧ 𝑦((hlG‘𝐺)‘𝐸)𝐹)) | 
| 74 | 60, 73 | r19.29vva 3215 | 1
⊢ (𝜑 → 〈“𝑋𝐵𝐶”〉(cgrA‘𝐺)〈“𝑌𝐸𝐹”〉) |