MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sacgr Structured version   Visualization version   GIF version

Theorem sacgr 28815
Description: Supplementary angles of congruent angles are themselves congruent. Theorem 11.13 of [Schwabhauser] p. 98. (Contributed by Thierry Arnoux, 30-Sep-2020.) (Proof shortened by Igor Ieskov, 16-Feb-2023.)
Hypotheses
Ref Expression
dfcgra2.p 𝑃 = (Base‘𝐺)
dfcgra2.i 𝐼 = (Itv‘𝐺)
dfcgra2.m = (dist‘𝐺)
dfcgra2.g (𝜑𝐺 ∈ TarskiG)
dfcgra2.a (𝜑𝐴𝑃)
dfcgra2.b (𝜑𝐵𝑃)
dfcgra2.c (𝜑𝐶𝑃)
dfcgra2.d (𝜑𝐷𝑃)
dfcgra2.e (𝜑𝐸𝑃)
dfcgra2.f (𝜑𝐹𝑃)
sacgr.x (𝜑𝑋𝑃)
sacgr.y (𝜑𝑌𝑃)
sacgr.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
sacgr.2 (𝜑𝐵 ∈ (𝐴𝐼𝑋))
sacgr.3 (𝜑𝐸 ∈ (𝐷𝐼𝑌))
sacgr.4 (𝜑𝐵𝑋)
sacgr.5 (𝜑𝐸𝑌)
Assertion
Ref Expression
sacgr (𝜑 → ⟨“𝑋𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑌𝐸𝐹”⟩)

Proof of Theorem sacgr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dfcgra2.p . . 3 𝑃 = (Base‘𝐺)
2 dfcgra2.i . . 3 𝐼 = (Itv‘𝐺)
3 eqid 2736 . . 3 (hlG‘𝐺) = (hlG‘𝐺)
4 dfcgra2.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54ad3antrrr 730 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐺 ∈ TarskiG)
6 sacgr.x . . . 4 (𝜑𝑋𝑃)
76ad3antrrr 730 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑋𝑃)
8 dfcgra2.b . . . 4 (𝜑𝐵𝑃)
98ad3antrrr 730 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐵𝑃)
10 dfcgra2.c . . . 4 (𝜑𝐶𝑃)
1110ad3antrrr 730 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐶𝑃)
12 sacgr.y . . . 4 (𝜑𝑌𝑃)
1312ad3antrrr 730 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑌𝑃)
14 dfcgra2.e . . . 4 (𝜑𝐸𝑃)
1514ad3antrrr 730 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸𝑃)
16 dfcgra2.f . . . 4 (𝜑𝐹𝑃)
1716ad3antrrr 730 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐹𝑃)
18 dfcgra2.m . . . 4 = (dist‘𝐺)
19 eqid 2736 . . . 4 (LineG‘𝐺) = (LineG‘𝐺)
20 eqid 2736 . . . 4 (pInvG‘𝐺) = (pInvG‘𝐺)
21 eqid 2736 . . . 4 ((pInvG‘𝐺)‘𝐸) = ((pInvG‘𝐺)‘𝐸)
22 simpllr 775 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑥𝑃)
231, 18, 2, 19, 20, 5, 15, 21, 22mircl 28645 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐸)‘𝑥) ∈ 𝑃)
24 simplr 768 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑦𝑃)
25 eqid 2736 . . . . . . 7 ((pInvG‘𝐺)‘𝐵) = ((pInvG‘𝐺)‘𝐵)
261, 18, 2, 19, 20, 4, 8, 25, 6mirmir 28646 . . . . . 6 (𝜑 → (((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋)) = 𝑋)
27 eqidd 2737 . . . . . 6 (𝜑𝐵 = 𝐵)
28 eqidd 2737 . . . . . 6 (𝜑𝐶 = 𝐶)
2926, 27, 28s3eqd 14888 . . . . 5 (𝜑 → ⟨“(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))𝐵𝐶”⟩ = ⟨“𝑋𝐵𝐶”⟩)
3029ad3antrrr 730 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → ⟨“(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))𝐵𝐶”⟩ = ⟨“𝑋𝐵𝐶”⟩)
31 eqid 2736 . . . . 5 (cgrG‘𝐺) = (cgrG‘𝐺)
321, 18, 2, 19, 20, 4, 8, 25, 6mircl 28645 . . . . . 6 (𝜑 → (((pInvG‘𝐺)‘𝐵)‘𝑋) ∈ 𝑃)
3332ad3antrrr 730 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐵)‘𝑋) ∈ 𝑃)
34 sacgr.4 . . . . . . . 8 (𝜑𝐵𝑋)
3534necomd 2988 . . . . . . 7 (𝜑𝑋𝐵)
361, 18, 2, 19, 20, 4, 8, 25, 6, 35mirne 28651 . . . . . 6 (𝜑 → (((pInvG‘𝐺)‘𝐵)‘𝑋) ≠ 𝐵)
3736ad3antrrr 730 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐵)‘𝑋) ≠ 𝐵)
38 simpr1 1195 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → ⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩)
391, 18, 2, 19, 20, 5, 31, 25, 21, 33, 9, 22, 15, 11, 24, 37, 38mirtrcgr 28667 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → ⟨“(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))𝐵𝐶”⟩(cgrG‘𝐺)⟨“(((pInvG‘𝐺)‘𝐸)‘𝑥)𝐸𝑦”⟩)
4030, 39eqbrtrrd 5148 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → ⟨“𝑋𝐵𝐶”⟩(cgrG‘𝐺)⟨“(((pInvG‘𝐺)‘𝐸)‘𝑥)𝐸𝑦”⟩)
41 sacgr.5 . . . . . . 7 (𝜑𝐸𝑌)
4241ad3antrrr 730 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸𝑌)
4342necomd 2988 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑌𝐸)
44 dfcgra2.d . . . . . . . 8 (𝜑𝐷𝑃)
4544ad3antrrr 730 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐷𝑃)
46 simpr2 1196 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑥((hlG‘𝐺)‘𝐸)𝐷)
471, 2, 3, 22, 45, 15, 5, 46hlne1 28589 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑥𝐸)
481, 18, 2, 19, 20, 5, 15, 21, 22, 47mirne 28651 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐸)‘𝑥) ≠ 𝐸)
491, 2, 3, 22, 45, 15, 5, 46hlcomd 28588 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐷((hlG‘𝐺)‘𝐸)𝑥)
50 sacgr.3 . . . . . . . . 9 (𝜑𝐸 ∈ (𝐷𝐼𝑌))
5150ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝐷𝐼𝑌))
521, 2, 3, 45, 22, 13, 5, 15, 49, 51btwnhl 28598 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝑥𝐼𝑌))
531, 18, 2, 5, 22, 15, 13, 52tgbtwncom 28472 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝑌𝐼𝑥))
541, 18, 2, 19, 20, 5, 15, 21, 22mirmir 28646 . . . . . . 7 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐸)‘(((pInvG‘𝐺)‘𝐸)‘𝑥)) = 𝑥)
5554oveq2d 7426 . . . . . 6 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (𝑌𝐼(((pInvG‘𝐺)‘𝐸)‘(((pInvG‘𝐺)‘𝐸)‘𝑥))) = (𝑌𝐼𝑥))
5653, 55eleqtrrd 2838 . . . . 5 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝐸 ∈ (𝑌𝐼(((pInvG‘𝐺)‘𝐸)‘(((pInvG‘𝐺)‘𝐸)‘𝑥))))
571, 18, 2, 19, 20, 5, 21, 3, 15, 13, 23, 15, 43, 48, 56mirhl2 28665 . . . 4 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑌((hlG‘𝐺)‘𝐸)(((pInvG‘𝐺)‘𝐸)‘𝑥))
581, 2, 3, 13, 23, 15, 5, 57hlcomd 28588 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → (((pInvG‘𝐺)‘𝐸)‘𝑥)((hlG‘𝐺)‘𝐸)𝑌)
59 simpr3 1197 . . 3 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → 𝑦((hlG‘𝐺)‘𝐸)𝐹)
601, 2, 3, 5, 7, 9, 11, 13, 15, 17, 23, 24, 40, 58, 59iscgrad 28795 . 2 ((((𝜑𝑥𝑃) ∧ 𝑦𝑃) ∧ (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)) → ⟨“𝑋𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑌𝐸𝐹”⟩)
61 dfcgra2.a . . . 4 (𝜑𝐴𝑃)
62 sacgr.1 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
631, 2, 3, 4, 61, 8, 10, 44, 14, 16, 62cgrane2 28797 . . . . . 6 (𝜑𝐵𝐶)
641, 2, 4, 3, 32, 8, 10, 36, 63cgraid 28803 . . . . 5 (𝜑 → ⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrA‘𝐺)⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩)
651, 2, 3, 4, 61, 8, 10, 44, 14, 16, 62cgrane1 28796 . . . . . 6 (𝜑𝐴𝐵)
66 sacgr.2 . . . . . . 7 (𝜑𝐵 ∈ (𝐴𝐼𝑋))
6726oveq2d 7426 . . . . . . 7 (𝜑 → (𝐴𝐼(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))) = (𝐴𝐼𝑋))
6866, 67eleqtrrd 2838 . . . . . 6 (𝜑𝐵 ∈ (𝐴𝐼(((pInvG‘𝐺)‘𝐵)‘(((pInvG‘𝐺)‘𝐵)‘𝑋))))
691, 18, 2, 19, 20, 4, 25, 3, 8, 61, 32, 61, 65, 36, 68mirhl2 28665 . . . . 5 (𝜑𝐴((hlG‘𝐺)‘𝐵)(((pInvG‘𝐺)‘𝐵)‘𝑋))
701, 2, 3, 4, 32, 8, 10, 32, 8, 10, 64, 61, 69cgrahl1 28800 . . . 4 (𝜑 → ⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐴𝐵𝐶”⟩)
711, 2, 4, 3, 32, 8, 10, 61, 8, 10, 70, 44, 14, 16, 62cgratr 28807 . . 3 (𝜑 → ⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
721, 2, 3, 4, 32, 8, 10, 44, 14, 16iscgra 28793 . . 3 (𝜑 → (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹)))
7371, 72mpbid 232 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (⟨“(((pInvG‘𝐺)‘𝐵)‘𝑋)𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥((hlG‘𝐺)‘𝐸)𝐷𝑦((hlG‘𝐺)‘𝐸)𝐹))
7460, 73r19.29vva 3205 1 (𝜑 → ⟨“𝑋𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝑌𝐸𝐹”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061   class class class wbr 5124  cfv 6536  (class class class)co 7410  ⟨“cs3 14866  Basecbs 17233  distcds 17285  TarskiGcstrkg 28411  Itvcitv 28417  LineGclng 28418  cgrGccgrg 28494  hlGchlg 28584  pInvGcmir 28636  cgrAccgra 28791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-oadd 8489  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-fzo 13677  df-hash 14354  df-word 14537  df-concat 14594  df-s1 14619  df-s2 14872  df-s3 14873  df-trkgc 28432  df-trkgb 28433  df-trkgcb 28434  df-trkg 28437  df-cgrg 28495  df-leg 28567  df-hlg 28585  df-mir 28637  df-cgra 28792
This theorem is referenced by:  oacgr  28816
  Copyright terms: Public domain W3C validator