| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > perpdragALT | Structured version Visualization version GIF version | ||
| Description: Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| colperpex.p | ⊢ 𝑃 = (Base‘𝐺) |
| colperpex.d | ⊢ − = (dist‘𝐺) |
| colperpex.i | ⊢ 𝐼 = (Itv‘𝐺) |
| colperpex.l | ⊢ 𝐿 = (LineG‘𝐺) |
| colperpex.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| perpdrag.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
| perpdrag.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| perpdrag.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| perpdrag.4 | ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶)) |
| Ref | Expression |
|---|---|
| perpdragALT | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2734 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐴) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
| 3 | eqidd 2734 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 = 𝐶) | |
| 4 | 1, 2, 3 | s3eqd 14775 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 〈“𝐴𝐴𝐶”〉 = 〈“𝐴𝐵𝐶”〉) |
| 5 | colperpex.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
| 6 | colperpex.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
| 7 | colperpex.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 8 | colperpex.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
| 9 | eqid 2733 | . . . . 5 ⊢ (pInvG‘𝐺) = (pInvG‘𝐺) | |
| 10 | colperpex.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 11 | perpdrag.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 12 | perpdrag.4 | . . . . . . 7 ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶)) | |
| 13 | 8, 10, 12 | perpln1 28691 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
| 14 | perpdrag.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
| 15 | 5, 8, 7, 10, 13, 14 | tglnpt 28530 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| 16 | 5, 6, 7, 8, 9, 10, 11, 15, 11 | ragtrivb 28683 | . . . . 5 ⊢ (𝜑 → 〈“𝐶𝐴𝐴”〉 ∈ (∟G‘𝐺)) |
| 17 | 5, 6, 7, 8, 9, 10, 11, 15, 15, 16 | ragcom 28679 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐴𝐶”〉 ∈ (∟G‘𝐺)) |
| 18 | 17 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 〈“𝐴𝐴𝐶”〉 ∈ (∟G‘𝐺)) |
| 19 | 4, 18 | eqeltrrd 2834 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| 20 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐺 ∈ TarskiG) |
| 21 | 15 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝑃) |
| 22 | perpdrag.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 23 | 5, 8, 7, 10, 13, 22 | tglnpt 28530 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| 24 | 23 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑃) |
| 25 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝐷) |
| 26 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐴 ≠ 𝐵) | |
| 27 | 13 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐷 ∈ ran 𝐿) |
| 28 | 14 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝐷) |
| 29 | 5, 7, 8, 20, 21, 24, 26, 26, 27, 28, 25 | tglinethru 28617 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐷 = (𝐴𝐿𝐵)) |
| 30 | 25, 29 | eleqtrd 2835 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ (𝐴𝐿𝐵)) |
| 31 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐶 ∈ 𝑃) |
| 32 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶)) |
| 33 | 29, 32 | eqbrtrrd 5119 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐵𝐿𝐶)) |
| 34 | 5, 6, 7, 8, 20, 21, 24, 30, 31, 33 | perprag 28707 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| 35 | 19, 34 | pm2.61dane 3016 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ≠ wne 2929 class class class wbr 5095 ran crn 5622 ‘cfv 6488 (class class class)co 7354 〈“cs3 14753 Basecbs 17124 distcds 17174 TarskiGcstrkg 28408 Itvcitv 28414 LineGclng 28415 pInvGcmir 28633 ∟Gcrag 28674 ⟂Gcperpg 28676 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-oadd 8397 df-er 8630 df-map 8760 df-pm 8761 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-dju 9803 df-card 9841 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-n0 12391 df-xnn0 12464 df-z 12478 df-uz 12741 df-fz 13412 df-fzo 13559 df-hash 14242 df-word 14425 df-concat 14482 df-s1 14508 df-s2 14759 df-s3 14760 df-trkgc 28429 df-trkgb 28430 df-trkgcb 28431 df-trkg 28434 df-cgrg 28492 df-mir 28634 df-rag 28675 df-perpg 28677 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |