Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > perpdragALT | Structured version Visualization version GIF version |
Description: Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 12-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
colperpex.p | ⊢ 𝑃 = (Base‘𝐺) |
colperpex.d | ⊢ − = (dist‘𝐺) |
colperpex.i | ⊢ 𝐼 = (Itv‘𝐺) |
colperpex.l | ⊢ 𝐿 = (LineG‘𝐺) |
colperpex.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
perpdrag.1 | ⊢ (𝜑 → 𝐴 ∈ 𝐷) |
perpdrag.2 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
perpdrag.3 | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
perpdrag.4 | ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶)) |
Ref | Expression |
---|---|
perpdragALT | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2737 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐴) | |
2 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐴 = 𝐵) | |
3 | eqidd 2737 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 𝐶 = 𝐶) | |
4 | 1, 2, 3 | s3eqd 14677 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 〈“𝐴𝐴𝐶”〉 = 〈“𝐴𝐵𝐶”〉) |
5 | colperpex.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
6 | colperpex.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
7 | colperpex.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
8 | colperpex.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
9 | eqid 2736 | . . . . 5 ⊢ (pInvG‘𝐺) = (pInvG‘𝐺) | |
10 | colperpex.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
11 | perpdrag.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
12 | perpdrag.4 | . . . . . . 7 ⊢ (𝜑 → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶)) | |
13 | 8, 10, 12 | perpln1 27361 | . . . . . 6 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
14 | perpdrag.1 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ 𝐷) | |
15 | 5, 8, 7, 10, 13, 14 | tglnpt 27200 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
16 | 5, 6, 7, 8, 9, 10, 11, 15, 11 | ragtrivb 27353 | . . . . 5 ⊢ (𝜑 → 〈“𝐶𝐴𝐴”〉 ∈ (∟G‘𝐺)) |
17 | 5, 6, 7, 8, 9, 10, 11, 15, 15, 16 | ragcom 27349 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐴𝐶”〉 ∈ (∟G‘𝐺)) |
18 | 17 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 〈“𝐴𝐴𝐶”〉 ∈ (∟G‘𝐺)) |
19 | 4, 18 | eqeltrrd 2838 | . 2 ⊢ ((𝜑 ∧ 𝐴 = 𝐵) → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
20 | 10 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐺 ∈ TarskiG) |
21 | 15 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝑃) |
22 | perpdrag.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
23 | 5, 8, 7, 10, 13, 22 | tglnpt 27200 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
24 | 23 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝑃) |
25 | 22 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ 𝐷) |
26 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐴 ≠ 𝐵) | |
27 | 13 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐷 ∈ ran 𝐿) |
28 | 14 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐴 ∈ 𝐷) |
29 | 5, 7, 8, 20, 21, 24, 26, 26, 27, 28, 25 | tglinethru 27287 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐷 = (𝐴𝐿𝐵)) |
30 | 25, 29 | eleqtrd 2839 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐵 ∈ (𝐴𝐿𝐵)) |
31 | 11 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐶 ∈ 𝑃) |
32 | 12 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 𝐷(⟂G‘𝐺)(𝐵𝐿𝐶)) |
33 | 29, 32 | eqbrtrrd 5117 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐵𝐿𝐶)) |
34 | 5, 6, 7, 8, 20, 21, 24, 30, 31, 33 | perprag 27377 | . 2 ⊢ ((𝜑 ∧ 𝐴 ≠ 𝐵) → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
35 | 19, 34 | pm2.61dane 3029 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 class class class wbr 5093 ran crn 5622 ‘cfv 6480 (class class class)co 7338 〈“cs3 14655 Basecbs 17010 distcds 17069 TarskiGcstrkg 27078 Itvcitv 27084 LineGclng 27085 pInvGcmir 27303 ∟Gcrag 27344 ⟂Gcperpg 27346 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-tp 4579 df-op 4581 df-uni 4854 df-int 4896 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-1o 8368 df-oadd 8372 df-er 8570 df-map 8689 df-pm 8690 df-en 8806 df-dom 8807 df-sdom 8808 df-fin 8809 df-dju 9759 df-card 9797 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-3 12139 df-n0 12336 df-xnn0 12408 df-z 12422 df-uz 12685 df-fz 13342 df-fzo 13485 df-hash 14147 df-word 14319 df-concat 14375 df-s1 14401 df-s2 14661 df-s3 14662 df-trkgc 27099 df-trkgb 27100 df-trkgcb 27101 df-trkg 27104 df-cgrg 27162 df-mir 27304 df-rag 27345 df-perpg 27347 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |