![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > perprag | Structured version Visualization version GIF version |
Description: Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
Ref | Expression |
---|---|
colperpex.p | ⊢ 𝑃 = (Base‘𝐺) |
colperpex.d | ⊢ − = (dist‘𝐺) |
colperpex.i | ⊢ 𝐼 = (Itv‘𝐺) |
colperpex.l | ⊢ 𝐿 = (LineG‘𝐺) |
colperpex.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
perprag.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
perprag.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
perprag.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐿𝐵)) |
perprag.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
perprag.5 | ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐶𝐿𝐷)) |
Ref | Expression |
---|---|
perprag | ⊢ (𝜑 → 〈“𝐴𝐶𝐷”〉 ∈ (∟G‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2733 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝐴 = 𝐴) | |
2 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝐶 = 𝐷) | |
3 | eqidd 2733 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝐷 = 𝐷) | |
4 | 1, 2, 3 | s3eqd 14811 | . . 3 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 〈“𝐴𝐶𝐷”〉 = 〈“𝐴𝐷𝐷”〉) |
5 | colperpex.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
6 | colperpex.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
7 | colperpex.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
8 | colperpex.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
9 | eqid 2732 | . . . . 5 ⊢ (pInvG‘𝐺) = (pInvG‘𝐺) | |
10 | colperpex.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
11 | perprag.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
12 | perprag.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
13 | 5, 6, 7, 8, 9, 10, 11, 12, 12 | ragtrivb 27942 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐷𝐷”〉 ∈ (∟G‘𝐺)) |
14 | 13 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 〈“𝐴𝐷𝐷”〉 ∈ (∟G‘𝐺)) |
15 | 4, 14 | eqeltrd 2833 | . 2 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 〈“𝐴𝐶𝐷”〉 ∈ (∟G‘𝐺)) |
16 | 10 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐺 ∈ TarskiG) |
17 | perprag.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
18 | perprag.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐿𝐵)) | |
19 | 5, 8, 7, 10, 11, 17, 18 | tglngne 27790 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
20 | 5, 7, 8, 10, 11, 17, 19 | tgelrnln 27870 | . . . 4 ⊢ (𝜑 → (𝐴𝐿𝐵) ∈ ran 𝐿) |
21 | 20 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → (𝐴𝐿𝐵) ∈ ran 𝐿) |
22 | 5, 8, 7, 10, 20, 18 | tglnpt 27789 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
23 | 22 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ∈ 𝑃) |
24 | 12 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐷 ∈ 𝑃) |
25 | simpr 485 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ≠ 𝐷) | |
26 | 5, 7, 8, 16, 23, 24, 25 | tgelrnln 27870 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → (𝐶𝐿𝐷) ∈ ran 𝐿) |
27 | 18 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ∈ (𝐴𝐿𝐵)) |
28 | 5, 7, 8, 16, 23, 24, 25 | tglinerflx1 27873 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ∈ (𝐶𝐿𝐷)) |
29 | 27, 28 | elind 4193 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ∈ ((𝐴𝐿𝐵) ∩ (𝐶𝐿𝐷))) |
30 | 5, 7, 8, 10, 11, 17, 19 | tglinerflx1 27873 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐴𝐿𝐵)) |
31 | 30 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐴 ∈ (𝐴𝐿𝐵)) |
32 | 5, 7, 8, 16, 23, 24, 25 | tglinerflx2 27874 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐷 ∈ (𝐶𝐿𝐷)) |
33 | perprag.5 | . . . 4 ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐶𝐿𝐷)) | |
34 | 33 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐶𝐿𝐷)) |
35 | 5, 6, 7, 8, 16, 21, 26, 29, 31, 32, 34 | isperp2d 27956 | . 2 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 〈“𝐴𝐶𝐷”〉 ∈ (∟G‘𝐺)) |
36 | 15, 35 | pm2.61dane 3029 | 1 ⊢ (𝜑 → 〈“𝐴𝐶𝐷”〉 ∈ (∟G‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2940 class class class wbr 5147 ran crn 5676 ‘cfv 6540 (class class class)co 7405 〈“cs3 14789 Basecbs 17140 distcds 17202 TarskiGcstrkg 27667 Itvcitv 27673 LineGclng 27674 pInvGcmir 27892 ∟Gcrag 27933 ⟂Gcperpg 27935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-oadd 8466 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 df-concat 14517 df-s1 14542 df-s2 14795 df-s3 14796 df-trkgc 27688 df-trkgb 27689 df-trkgcb 27690 df-trkg 27693 df-cgrg 27751 df-mir 27893 df-rag 27934 df-perpg 27936 |
This theorem is referenced by: perpdragALT 27967 perpdrag 27968 colperpexlem3 27972 mideulem2 27974 opphllem 27975 opphllem5 27991 opphllem6 27992 trgcopy 28044 |
Copyright terms: Public domain | W3C validator |