Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  perprag Structured version   Visualization version   GIF version

Theorem perprag 26520
 Description: Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 10-Nov-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
perprag.1 (𝜑𝐴𝑃)
perprag.2 (𝜑𝐵𝑃)
perprag.3 (𝜑𝐶 ∈ (𝐴𝐿𝐵))
perprag.4 (𝜑𝐷𝑃)
perprag.5 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐶𝐿𝐷))
Assertion
Ref Expression
perprag (𝜑 → ⟨“𝐴𝐶𝐷”⟩ ∈ (∟G‘𝐺))

Proof of Theorem perprag
StepHypRef Expression
1 eqidd 2799 . . . 4 ((𝜑𝐶 = 𝐷) → 𝐴 = 𝐴)
2 simpr 488 . . . 4 ((𝜑𝐶 = 𝐷) → 𝐶 = 𝐷)
3 eqidd 2799 . . . 4 ((𝜑𝐶 = 𝐷) → 𝐷 = 𝐷)
41, 2, 3s3eqd 14217 . . 3 ((𝜑𝐶 = 𝐷) → ⟨“𝐴𝐶𝐷”⟩ = ⟨“𝐴𝐷𝐷”⟩)
5 colperpex.p . . . . 5 𝑃 = (Base‘𝐺)
6 colperpex.d . . . . 5 = (dist‘𝐺)
7 colperpex.i . . . . 5 𝐼 = (Itv‘𝐺)
8 colperpex.l . . . . 5 𝐿 = (LineG‘𝐺)
9 eqid 2798 . . . . 5 (pInvG‘𝐺) = (pInvG‘𝐺)
10 colperpex.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
11 perprag.1 . . . . 5 (𝜑𝐴𝑃)
12 perprag.4 . . . . 5 (𝜑𝐷𝑃)
135, 6, 7, 8, 9, 10, 11, 12, 12ragtrivb 26496 . . . 4 (𝜑 → ⟨“𝐴𝐷𝐷”⟩ ∈ (∟G‘𝐺))
1413adantr 484 . . 3 ((𝜑𝐶 = 𝐷) → ⟨“𝐴𝐷𝐷”⟩ ∈ (∟G‘𝐺))
154, 14eqeltrd 2890 . 2 ((𝜑𝐶 = 𝐷) → ⟨“𝐴𝐶𝐷”⟩ ∈ (∟G‘𝐺))
1610adantr 484 . . 3 ((𝜑𝐶𝐷) → 𝐺 ∈ TarskiG)
17 perprag.2 . . . . 5 (𝜑𝐵𝑃)
18 perprag.3 . . . . . 6 (𝜑𝐶 ∈ (𝐴𝐿𝐵))
195, 8, 7, 10, 11, 17, 18tglngne 26344 . . . . 5 (𝜑𝐴𝐵)
205, 7, 8, 10, 11, 17, 19tgelrnln 26424 . . . 4 (𝜑 → (𝐴𝐿𝐵) ∈ ran 𝐿)
2120adantr 484 . . 3 ((𝜑𝐶𝐷) → (𝐴𝐿𝐵) ∈ ran 𝐿)
225, 8, 7, 10, 20, 18tglnpt 26343 . . . . 5 (𝜑𝐶𝑃)
2322adantr 484 . . . 4 ((𝜑𝐶𝐷) → 𝐶𝑃)
2412adantr 484 . . . 4 ((𝜑𝐶𝐷) → 𝐷𝑃)
25 simpr 488 . . . 4 ((𝜑𝐶𝐷) → 𝐶𝐷)
265, 7, 8, 16, 23, 24, 25tgelrnln 26424 . . 3 ((𝜑𝐶𝐷) → (𝐶𝐿𝐷) ∈ ran 𝐿)
2718adantr 484 . . . 4 ((𝜑𝐶𝐷) → 𝐶 ∈ (𝐴𝐿𝐵))
285, 7, 8, 16, 23, 24, 25tglinerflx1 26427 . . . 4 ((𝜑𝐶𝐷) → 𝐶 ∈ (𝐶𝐿𝐷))
2927, 28elind 4121 . . 3 ((𝜑𝐶𝐷) → 𝐶 ∈ ((𝐴𝐿𝐵) ∩ (𝐶𝐿𝐷)))
305, 7, 8, 10, 11, 17, 19tglinerflx1 26427 . . . 4 (𝜑𝐴 ∈ (𝐴𝐿𝐵))
3130adantr 484 . . 3 ((𝜑𝐶𝐷) → 𝐴 ∈ (𝐴𝐿𝐵))
325, 7, 8, 16, 23, 24, 25tglinerflx2 26428 . . 3 ((𝜑𝐶𝐷) → 𝐷 ∈ (𝐶𝐿𝐷))
33 perprag.5 . . . 4 (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐶𝐿𝐷))
3433adantr 484 . . 3 ((𝜑𝐶𝐷) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐶𝐿𝐷))
355, 6, 7, 8, 16, 21, 26, 29, 31, 32, 34isperp2d 26510 . 2 ((𝜑𝐶𝐷) → ⟨“𝐴𝐶𝐷”⟩ ∈ (∟G‘𝐺))
3615, 35pm2.61dane 3074 1 (𝜑 → ⟨“𝐴𝐶𝐷”⟩ ∈ (∟G‘𝐺))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   = wceq 1538   ∈ wcel 2111   ≠ wne 2987   class class class wbr 5030  ran crn 5520  ‘cfv 6324  (class class class)co 7135  ⟨“cs3 14195  Basecbs 16475  distcds 16566  TarskiGcstrkg 26224  Itvcitv 26230  LineGclng 26231  pInvGcmir 26446  ∟Gcrag 26487  ⟂Gcperpg 26489 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-trkgc 26242  df-trkgb 26243  df-trkgcb 26244  df-trkg 26247  df-cgrg 26305  df-mir 26447  df-rag 26488  df-perpg 26490 This theorem is referenced by:  perpdragALT  26521  perpdrag  26522  colperpexlem3  26526  mideulem2  26528  opphllem  26529  opphllem5  26545  opphllem6  26546  trgcopy  26598
 Copyright terms: Public domain W3C validator