![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > perprag | Structured version Visualization version GIF version |
Description: Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
Ref | Expression |
---|---|
colperpex.p | β’ π = (BaseβπΊ) |
colperpex.d | β’ β = (distβπΊ) |
colperpex.i | β’ πΌ = (ItvβπΊ) |
colperpex.l | β’ πΏ = (LineGβπΊ) |
colperpex.g | β’ (π β πΊ β TarskiG) |
perprag.1 | β’ (π β π΄ β π) |
perprag.2 | β’ (π β π΅ β π) |
perprag.3 | β’ (π β πΆ β (π΄πΏπ΅)) |
perprag.4 | β’ (π β π· β π) |
perprag.5 | β’ (π β (π΄πΏπ΅)(βGβπΊ)(πΆπΏπ·)) |
Ref | Expression |
---|---|
perprag | β’ (π β β¨βπ΄πΆπ·ββ© β (βGβπΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2729 | . . . 4 β’ ((π β§ πΆ = π·) β π΄ = π΄) | |
2 | simpr 483 | . . . 4 β’ ((π β§ πΆ = π·) β πΆ = π·) | |
3 | eqidd 2729 | . . . 4 β’ ((π β§ πΆ = π·) β π· = π·) | |
4 | 1, 2, 3 | s3eqd 14855 | . . 3 β’ ((π β§ πΆ = π·) β β¨βπ΄πΆπ·ββ© = β¨βπ΄π·π·ββ©) |
5 | colperpex.p | . . . . 5 β’ π = (BaseβπΊ) | |
6 | colperpex.d | . . . . 5 β’ β = (distβπΊ) | |
7 | colperpex.i | . . . . 5 β’ πΌ = (ItvβπΊ) | |
8 | colperpex.l | . . . . 5 β’ πΏ = (LineGβπΊ) | |
9 | eqid 2728 | . . . . 5 β’ (pInvGβπΊ) = (pInvGβπΊ) | |
10 | colperpex.g | . . . . 5 β’ (π β πΊ β TarskiG) | |
11 | perprag.1 | . . . . 5 β’ (π β π΄ β π) | |
12 | perprag.4 | . . . . 5 β’ (π β π· β π) | |
13 | 5, 6, 7, 8, 9, 10, 11, 12, 12 | ragtrivb 28526 | . . . 4 β’ (π β β¨βπ΄π·π·ββ© β (βGβπΊ)) |
14 | 13 | adantr 479 | . . 3 β’ ((π β§ πΆ = π·) β β¨βπ΄π·π·ββ© β (βGβπΊ)) |
15 | 4, 14 | eqeltrd 2829 | . 2 β’ ((π β§ πΆ = π·) β β¨βπ΄πΆπ·ββ© β (βGβπΊ)) |
16 | 10 | adantr 479 | . . 3 β’ ((π β§ πΆ β π·) β πΊ β TarskiG) |
17 | perprag.2 | . . . . 5 β’ (π β π΅ β π) | |
18 | perprag.3 | . . . . . 6 β’ (π β πΆ β (π΄πΏπ΅)) | |
19 | 5, 8, 7, 10, 11, 17, 18 | tglngne 28374 | . . . . 5 β’ (π β π΄ β π΅) |
20 | 5, 7, 8, 10, 11, 17, 19 | tgelrnln 28454 | . . . 4 β’ (π β (π΄πΏπ΅) β ran πΏ) |
21 | 20 | adantr 479 | . . 3 β’ ((π β§ πΆ β π·) β (π΄πΏπ΅) β ran πΏ) |
22 | 5, 8, 7, 10, 20, 18 | tglnpt 28373 | . . . . 5 β’ (π β πΆ β π) |
23 | 22 | adantr 479 | . . . 4 β’ ((π β§ πΆ β π·) β πΆ β π) |
24 | 12 | adantr 479 | . . . 4 β’ ((π β§ πΆ β π·) β π· β π) |
25 | simpr 483 | . . . 4 β’ ((π β§ πΆ β π·) β πΆ β π·) | |
26 | 5, 7, 8, 16, 23, 24, 25 | tgelrnln 28454 | . . 3 β’ ((π β§ πΆ β π·) β (πΆπΏπ·) β ran πΏ) |
27 | 18 | adantr 479 | . . . 4 β’ ((π β§ πΆ β π·) β πΆ β (π΄πΏπ΅)) |
28 | 5, 7, 8, 16, 23, 24, 25 | tglinerflx1 28457 | . . . 4 β’ ((π β§ πΆ β π·) β πΆ β (πΆπΏπ·)) |
29 | 27, 28 | elind 4196 | . . 3 β’ ((π β§ πΆ β π·) β πΆ β ((π΄πΏπ΅) β© (πΆπΏπ·))) |
30 | 5, 7, 8, 10, 11, 17, 19 | tglinerflx1 28457 | . . . 4 β’ (π β π΄ β (π΄πΏπ΅)) |
31 | 30 | adantr 479 | . . 3 β’ ((π β§ πΆ β π·) β π΄ β (π΄πΏπ΅)) |
32 | 5, 7, 8, 16, 23, 24, 25 | tglinerflx2 28458 | . . 3 β’ ((π β§ πΆ β π·) β π· β (πΆπΏπ·)) |
33 | perprag.5 | . . . 4 β’ (π β (π΄πΏπ΅)(βGβπΊ)(πΆπΏπ·)) | |
34 | 33 | adantr 479 | . . 3 β’ ((π β§ πΆ β π·) β (π΄πΏπ΅)(βGβπΊ)(πΆπΏπ·)) |
35 | 5, 6, 7, 8, 16, 21, 26, 29, 31, 32, 34 | isperp2d 28540 | . 2 β’ ((π β§ πΆ β π·) β β¨βπ΄πΆπ·ββ© β (βGβπΊ)) |
36 | 15, 35 | pm2.61dane 3026 | 1 β’ (π β β¨βπ΄πΆπ·ββ© β (βGβπΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wne 2937 class class class wbr 5152 ran crn 5683 βcfv 6553 (class class class)co 7426 β¨βcs3 14833 Basecbs 17187 distcds 17249 TarskiGcstrkg 28251 Itvcitv 28257 LineGclng 28258 pInvGcmir 28476 βGcrag 28517 βGcperpg 28519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 ax-un 7746 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3475 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4913 df-int 4954 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6310 df-ord 6377 df-on 6378 df-lim 6379 df-suc 6380 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7877 df-1st 7999 df-2nd 8000 df-frecs 8293 df-wrecs 8324 df-recs 8398 df-rdg 8437 df-1o 8493 df-oadd 8497 df-er 8731 df-map 8853 df-pm 8854 df-en 8971 df-dom 8972 df-sdom 8973 df-fin 8974 df-dju 9932 df-card 9970 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12251 df-2 12313 df-3 12314 df-n0 12511 df-xnn0 12583 df-z 12597 df-uz 12861 df-fz 13525 df-fzo 13668 df-hash 14330 df-word 14505 df-concat 14561 df-s1 14586 df-s2 14839 df-s3 14840 df-trkgc 28272 df-trkgb 28273 df-trkgcb 28274 df-trkg 28277 df-cgrg 28335 df-mir 28477 df-rag 28518 df-perpg 28520 |
This theorem is referenced by: perpdragALT 28551 perpdrag 28552 colperpexlem3 28556 mideulem2 28558 opphllem 28559 opphllem5 28575 opphllem6 28576 trgcopy 28628 |
Copyright terms: Public domain | W3C validator |