| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > perprag | Structured version Visualization version GIF version | ||
| Description: Deduce a right angle from perpendicular lines. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
| Ref | Expression |
|---|---|
| colperpex.p | ⊢ 𝑃 = (Base‘𝐺) |
| colperpex.d | ⊢ − = (dist‘𝐺) |
| colperpex.i | ⊢ 𝐼 = (Itv‘𝐺) |
| colperpex.l | ⊢ 𝐿 = (LineG‘𝐺) |
| colperpex.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| perprag.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| perprag.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| perprag.3 | ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐿𝐵)) |
| perprag.4 | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| perprag.5 | ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐶𝐿𝐷)) |
| Ref | Expression |
|---|---|
| perprag | ⊢ (𝜑 → 〈“𝐴𝐶𝐷”〉 ∈ (∟G‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝐴 = 𝐴) | |
| 2 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝐶 = 𝐷) | |
| 3 | eqidd 2730 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 𝐷 = 𝐷) | |
| 4 | 1, 2, 3 | s3eqd 14789 | . . 3 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 〈“𝐴𝐶𝐷”〉 = 〈“𝐴𝐷𝐷”〉) |
| 5 | colperpex.p | . . . . 5 ⊢ 𝑃 = (Base‘𝐺) | |
| 6 | colperpex.d | . . . . 5 ⊢ − = (dist‘𝐺) | |
| 7 | colperpex.i | . . . . 5 ⊢ 𝐼 = (Itv‘𝐺) | |
| 8 | colperpex.l | . . . . 5 ⊢ 𝐿 = (LineG‘𝐺) | |
| 9 | eqid 2729 | . . . . 5 ⊢ (pInvG‘𝐺) = (pInvG‘𝐺) | |
| 10 | colperpex.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 11 | perprag.1 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 12 | perprag.4 | . . . . 5 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 13 | 5, 6, 7, 8, 9, 10, 11, 12, 12 | ragtrivb 28665 | . . . 4 ⊢ (𝜑 → 〈“𝐴𝐷𝐷”〉 ∈ (∟G‘𝐺)) |
| 14 | 13 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 〈“𝐴𝐷𝐷”〉 ∈ (∟G‘𝐺)) |
| 15 | 4, 14 | eqeltrd 2828 | . 2 ⊢ ((𝜑 ∧ 𝐶 = 𝐷) → 〈“𝐴𝐶𝐷”〉 ∈ (∟G‘𝐺)) |
| 16 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐺 ∈ TarskiG) |
| 17 | perprag.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 18 | perprag.3 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ (𝐴𝐿𝐵)) | |
| 19 | 5, 8, 7, 10, 11, 17, 18 | tglngne 28513 | . . . . 5 ⊢ (𝜑 → 𝐴 ≠ 𝐵) |
| 20 | 5, 7, 8, 10, 11, 17, 19 | tgelrnln 28593 | . . . 4 ⊢ (𝜑 → (𝐴𝐿𝐵) ∈ ran 𝐿) |
| 21 | 20 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → (𝐴𝐿𝐵) ∈ ran 𝐿) |
| 22 | 5, 8, 7, 10, 20, 18 | tglnpt 28512 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| 23 | 22 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ∈ 𝑃) |
| 24 | 12 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐷 ∈ 𝑃) |
| 25 | simpr 484 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ≠ 𝐷) | |
| 26 | 5, 7, 8, 16, 23, 24, 25 | tgelrnln 28593 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → (𝐶𝐿𝐷) ∈ ran 𝐿) |
| 27 | 18 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ∈ (𝐴𝐿𝐵)) |
| 28 | 5, 7, 8, 16, 23, 24, 25 | tglinerflx1 28596 | . . . 4 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ∈ (𝐶𝐿𝐷)) |
| 29 | 27, 28 | elind 4153 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐶 ∈ ((𝐴𝐿𝐵) ∩ (𝐶𝐿𝐷))) |
| 30 | 5, 7, 8, 10, 11, 17, 19 | tglinerflx1 28596 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ (𝐴𝐿𝐵)) |
| 31 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐴 ∈ (𝐴𝐿𝐵)) |
| 32 | 5, 7, 8, 16, 23, 24, 25 | tglinerflx2 28597 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 𝐷 ∈ (𝐶𝐿𝐷)) |
| 33 | perprag.5 | . . . 4 ⊢ (𝜑 → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐶𝐿𝐷)) | |
| 34 | 33 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → (𝐴𝐿𝐵)(⟂G‘𝐺)(𝐶𝐿𝐷)) |
| 35 | 5, 6, 7, 8, 16, 21, 26, 29, 31, 32, 34 | isperp2d 28679 | . 2 ⊢ ((𝜑 ∧ 𝐶 ≠ 𝐷) → 〈“𝐴𝐶𝐷”〉 ∈ (∟G‘𝐺)) |
| 36 | 15, 35 | pm2.61dane 3012 | 1 ⊢ (𝜑 → 〈“𝐴𝐶𝐷”〉 ∈ (∟G‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5095 ran crn 5624 ‘cfv 6486 (class class class)co 7353 〈“cs3 14767 Basecbs 17138 distcds 17188 TarskiGcstrkg 28390 Itvcitv 28396 LineGclng 28397 pInvGcmir 28615 ∟Gcrag 28656 ⟂Gcperpg 28658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-oadd 8399 df-er 8632 df-map 8762 df-pm 8763 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-concat 14496 df-s1 14521 df-s2 14773 df-s3 14774 df-trkgc 28411 df-trkgb 28412 df-trkgcb 28413 df-trkg 28416 df-cgrg 28474 df-mir 28616 df-rag 28657 df-perpg 28659 |
| This theorem is referenced by: perpdragALT 28690 perpdrag 28691 colperpexlem3 28695 mideulem2 28697 opphllem 28698 opphllem5 28714 opphllem6 28715 trgcopy 28767 |
| Copyright terms: Public domain | W3C validator |