MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hypcgrlem1 Structured version   Visualization version   GIF version

Theorem hypcgrlem1 28040
Description: Lemma for hypcgr 28042, case where triangles share a cathetus. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
hypcgr.p 𝑃 = (Base‘𝐺)
hypcgr.m = (dist‘𝐺)
hypcgr.i 𝐼 = (Itv‘𝐺)
hypcgr.g (𝜑𝐺 ∈ TarskiG)
hypcgr.h (𝜑𝐺DimTarskiG≥2)
hypcgr.a (𝜑𝐴𝑃)
hypcgr.b (𝜑𝐵𝑃)
hypcgr.c (𝜑𝐶𝑃)
hypcgr.d (𝜑𝐷𝑃)
hypcgr.e (𝜑𝐸𝑃)
hypcgr.f (𝜑𝐹𝑃)
hypcgr.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
hypcgr.2 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
hypcgr.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
hypcgr.4 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
hypcgrlem2.b (𝜑𝐵 = 𝐸)
hypcgrlem1.s 𝑆 = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
hypcgrlem1.a (𝜑𝐶 = 𝐹)
Assertion
Ref Expression
hypcgrlem1 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))

Proof of Theorem hypcgrlem1
StepHypRef Expression
1 hypcgr.p . . 3 𝑃 = (Base‘𝐺)
2 hypcgr.m . . 3 = (dist‘𝐺)
3 hypcgr.i . . 3 𝐼 = (Itv‘𝐺)
4 hypcgr.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 482 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐺 ∈ TarskiG)
6 hypcgr.c . . . 4 (𝜑𝐶𝑃)
76adantr 482 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐶𝑃)
8 hypcgr.a . . . 4 (𝜑𝐴𝑃)
98adantr 482 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐴𝑃)
10 hypcgr.f . . . 4 (𝜑𝐹𝑃)
1110adantr 482 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐹𝑃)
12 hypcgr.d . . . 4 (𝜑𝐷𝑃)
1312adantr 482 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐷𝑃)
14 eqid 2733 . . . . . . 7 (LineG‘𝐺) = (LineG‘𝐺)
15 eqid 2733 . . . . . . 7 (pInvG‘𝐺) = (pInvG‘𝐺)
16 hypcgr.b . . . . . . 7 (𝜑𝐵𝑃)
17 hypcgr.1 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
181, 2, 3, 14, 15, 4, 8, 16, 6, 17ragcom 27939 . . . . . 6 (𝜑 → ⟨“𝐶𝐵𝐴”⟩ ∈ (∟G‘𝐺))
191, 2, 3, 14, 15, 4, 6, 16, 8israg 27938 . . . . . 6 (𝜑 → (⟨“𝐶𝐵𝐴”⟩ ∈ (∟G‘𝐺) ↔ (𝐶 𝐴) = (𝐶 (((pInvG‘𝐺)‘𝐵)‘𝐴))))
2018, 19mpbid 231 . . . . 5 (𝜑 → (𝐶 𝐴) = (𝐶 (((pInvG‘𝐺)‘𝐵)‘𝐴)))
2120adantr 482 . . . 4 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐶 𝐴) = (𝐶 (((pInvG‘𝐺)‘𝐵)‘𝐴)))
22 hypcgrlem1.a . . . . . . 7 (𝜑𝐶 = 𝐹)
2322eqcomd 2739 . . . . . 6 (𝜑𝐹 = 𝐶)
2423adantr 482 . . . . 5 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐹 = 𝐶)
25 hypcgr.h . . . . . . 7 (𝜑𝐺DimTarskiG≥2)
261, 2, 3, 4, 25, 8, 12, 15, 16ismidb 28019 . . . . . 6 (𝜑 → (𝐷 = (((pInvG‘𝐺)‘𝐵)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐷) = 𝐵))
2726biimpar 479 . . . . 5 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐷 = (((pInvG‘𝐺)‘𝐵)‘𝐴))
2824, 27oveq12d 7424 . . . 4 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐹 𝐷) = (𝐶 (((pInvG‘𝐺)‘𝐵)‘𝐴)))
2921, 28eqtr4d 2776 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐶 𝐴) = (𝐹 𝐷))
301, 2, 3, 5, 7, 9, 11, 13, 29tgcgrcomlr 27721 . 2 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
31 simpr 486 . . . 4 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = 𝐷) → 𝐴 = 𝐷)
3222ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = 𝐷) → 𝐶 = 𝐹)
3331, 32oveq12d 7424 . . 3 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = 𝐷) → (𝐴 𝐶) = (𝐷 𝐹))
3417ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
354ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐺 ∈ TarskiG)
368ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴𝑃)
3716ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐵𝑃)
386ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐶𝑃)
391, 2, 3, 14, 15, 35, 36, 37, 38israg 27938 . . . . . 6 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 (((pInvG‘𝐺)‘𝐵)‘𝐶))))
4034, 39mpbid 231 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 𝐶) = (𝐴 (((pInvG‘𝐺)‘𝐵)‘𝐶)))
4125ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐺DimTarskiG≥2)
42 hypcgrlem1.s . . . . . . 7 𝑆 = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
4312ad2antrr 725 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐷𝑃)
441, 2, 3, 35, 41, 36, 43midcl 28018 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ 𝑃)
45 simplr 768 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ≠ 𝐵)
461, 3, 14, 35, 44, 37, 45tgelrnln 27871 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵) ∈ ran (LineG‘𝐺))
47 eqid 2733 . . . . . . 7 ((pInvG‘𝐺)‘𝐵) = ((pInvG‘𝐺)‘𝐵)
48 eqid 2733 . . . . . . . . 9 (cgrG‘𝐺) = (cgrG‘𝐺)
491, 2, 3, 14, 15, 35, 37, 47, 38mircl 27902 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (((pInvG‘𝐺)‘𝐵)‘𝐶) ∈ 𝑃)
50 simpr 486 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴𝐷)
511, 2, 3, 35, 41, 36, 43midbtwn 28020 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (𝐴𝐼𝐷))
521, 14, 3, 35, 36, 44, 43, 51btwncolg3 27798 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷 ∈ (𝐴(LineG‘𝐺)(𝐴(midG‘𝐺)𝐷)) ∨ 𝐴 = (𝐴(midG‘𝐺)𝐷)))
53 eqidd 2734 . . . . . . . . . . . . 13 (𝜑𝐷 = 𝐷)
54 hypcgrlem2.b . . . . . . . . . . . . 13 (𝜑𝐵 = 𝐸)
5553, 54, 22s3eqd 14812 . . . . . . . . . . . 12 (𝜑 → ⟨“𝐷𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩)
5655ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐷𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩)
57 hypcgr.2 . . . . . . . . . . . 12 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
5857ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
5956, 58eqeltrd 2834 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐷𝐵𝐶”⟩ ∈ (∟G‘𝐺))
601, 2, 3, 14, 15, 35, 43, 37, 38israg 27938 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (⟨“𝐷𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐷 𝐶) = (𝐷 (((pInvG‘𝐺)‘𝐵)‘𝐶))))
6159, 60mpbid 231 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷 𝐶) = (𝐷 (((pInvG‘𝐺)‘𝐵)‘𝐶)))
621, 14, 3, 35, 36, 43, 44, 48, 38, 49, 2, 50, 52, 40, 61lncgr 27810 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ((𝐴(midG‘𝐺)𝐷) 𝐶) = ((𝐴(midG‘𝐺)𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐶)))
631, 2, 3, 14, 15, 35, 44, 37, 38israg 27938 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (⟨“(𝐴(midG‘𝐺)𝐷)𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ ((𝐴(midG‘𝐺)𝐷) 𝐶) = ((𝐴(midG‘𝐺)𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐶))))
6462, 63mpbird 257 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“(𝐴(midG‘𝐺)𝐷)𝐵𝐶”⟩ ∈ (∟G‘𝐺))
651, 3, 14, 35, 44, 37, 45tglinerflx1 27874 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
661, 3, 14, 35, 44, 37, 45tglinerflx2 27875 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐵 ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
671, 2, 3, 35, 41, 42, 14, 46, 44, 47, 64, 65, 66, 38, 45lmimid 28035 . . . . . 6 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝑆𝐶) = (((pInvG‘𝐺)‘𝐵)‘𝐶))
6867oveq2d 7422 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 (𝑆𝐶)) = (𝐴 (((pInvG‘𝐺)‘𝐵)‘𝐶)))
6940, 68eqtr4d 2776 . . . 4 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 𝐶) = (𝐴 (𝑆𝐶)))
701, 2, 3, 35, 41, 43, 36midcom 28023 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷(midG‘𝐺)𝐴) = (𝐴(midG‘𝐺)𝐷))
7170, 65eqeltrd 2834 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷(midG‘𝐺)𝐴) ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
7250necomd 2997 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐷𝐴)
731, 3, 14, 35, 43, 36, 72tgelrnln 27871 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷(LineG‘𝐺)𝐴) ∈ ran (LineG‘𝐺))
741, 2, 3, 35, 36, 44, 43, 51tgbtwncom 27729 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (𝐷𝐼𝐴))
751, 3, 14, 35, 43, 36, 44, 72, 74btwnlng1 27860 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (𝐷(LineG‘𝐺)𝐴))
7665, 75elind 4194 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵) ∩ (𝐷(LineG‘𝐺)𝐴)))
771, 3, 14, 35, 43, 36, 72tglinerflx2 27875 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴 ∈ (𝐷(LineG‘𝐺)𝐴))
7845necomd 2997 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐵 ≠ (𝐴(midG‘𝐺)𝐷))
794ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐺 ∈ TarskiG)
808ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐴𝑃)
8112ad2antrr 725 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐷𝑃)
8225ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐺DimTarskiG≥2)
83 simpr 486 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐴 = (𝐴(midG‘𝐺)𝐷))
8483eqcomd 2739 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → (𝐴(midG‘𝐺)𝐷) = 𝐴)
851, 2, 3, 79, 82, 80, 81, 84midcgr 28021 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → (𝐴 𝐴) = (𝐴 𝐷))
8685eqcomd 2739 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → (𝐴 𝐷) = (𝐴 𝐴))
871, 2, 3, 79, 80, 81, 80, 86axtgcgrid 27704 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐴 = 𝐷)
8887ex 414 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) → (𝐴 = (𝐴(midG‘𝐺)𝐷) → 𝐴 = 𝐷))
8988necon3d 2962 . . . . . . . . . 10 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) → (𝐴𝐷𝐴 ≠ (𝐴(midG‘𝐺)𝐷)))
9089imp 408 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴 ≠ (𝐴(midG‘𝐺)𝐷))
91 hypcgr.e . . . . . . . . . . . . . 14 (𝜑𝐸𝑃)
92 hypcgr.3 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
931, 2, 3, 4, 8, 16, 12, 91, 92tgcgrcomlr 27721 . . . . . . . . . . . . 13 (𝜑 → (𝐵 𝐴) = (𝐸 𝐷))
9454oveq1d 7421 . . . . . . . . . . . . 13 (𝜑 → (𝐵 𝐷) = (𝐸 𝐷))
9593, 94eqtr4d 2776 . . . . . . . . . . . 12 (𝜑 → (𝐵 𝐴) = (𝐵 𝐷))
9695ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐵 𝐴) = (𝐵 𝐷))
97 eqidd 2734 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) = (𝐴(midG‘𝐺)𝐷))
981, 2, 3, 35, 41, 36, 43, 15, 44ismidb 28019 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴) ↔ (𝐴(midG‘𝐺)𝐷) = (𝐴(midG‘𝐺)𝐷)))
9997, 98mpbird 257 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐷 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴))
10099oveq2d 7422 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐵 𝐷) = (𝐵 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴)))
10196, 100eqtrd 2773 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐵 𝐴) = (𝐵 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴)))
1021, 2, 3, 14, 15, 35, 37, 44, 36israg 27938 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (⟨“𝐵(𝐴(midG‘𝐺)𝐷)𝐴”⟩ ∈ (∟G‘𝐺) ↔ (𝐵 𝐴) = (𝐵 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴))))
103101, 102mpbird 257 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐵(𝐴(midG‘𝐺)𝐷)𝐴”⟩ ∈ (∟G‘𝐺))
1041, 2, 3, 14, 35, 46, 73, 76, 66, 77, 78, 90, 103ragperp 27958 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐷(LineG‘𝐺)𝐴))
105104orcd 872 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐷(LineG‘𝐺)𝐴) ∨ 𝐷 = 𝐴))
1061, 2, 3, 35, 41, 42, 14, 46, 43, 36islmib 28028 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 = (𝑆𝐷) ↔ ((𝐷(midG‘𝐺)𝐴) ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵) ∧ (((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐷(LineG‘𝐺)𝐴) ∨ 𝐷 = 𝐴))))
10771, 105, 106mpbir2and 712 . . . . . 6 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴 = (𝑆𝐷))
108107oveq1d 7421 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 (𝑆𝐶)) = ((𝑆𝐷) (𝑆𝐶)))
1091, 2, 3, 35, 41, 42, 14, 46, 43, 38lmiiso 28038 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ((𝑆𝐷) (𝑆𝐶)) = (𝐷 𝐶))
11022oveq2d 7422 . . . . . 6 (𝜑 → (𝐷 𝐶) = (𝐷 𝐹))
111110ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷 𝐶) = (𝐷 𝐹))
112108, 109, 1113eqtrd 2777 . . . 4 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 (𝑆𝐶)) = (𝐷 𝐹))
11369, 112eqtrd 2773 . . 3 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 𝐶) = (𝐷 𝐹))
11433, 113pm2.61dane 3030 . 2 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
11530, 114pm2.61dane 3030 1 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wo 846   = wceq 1542  wcel 2107  wne 2941   class class class wbr 5148  cfv 6541  (class class class)co 7406  2c2 12264  ⟨“cs3 14790  Basecbs 17141  distcds 17203  TarskiGcstrkg 27668  DimTarskiGcstrkgld 27672  Itvcitv 27674  LineGclng 27675  cgrGccgrg 27751  pInvGcmir 27893  ∟Gcrag 27934  ⟂Gcperpg 27936  midGcmid 28013  lInvGclmi 28014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6298  df-ord 6365  df-on 6366  df-lim 6367  df-suc 6368  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-om 7853  df-1st 7972  df-2nd 7973  df-frecs 8263  df-wrecs 8294  df-recs 8368  df-rdg 8407  df-1o 8463  df-oadd 8467  df-er 8700  df-map 8819  df-pm 8820  df-en 8937  df-dom 8938  df-sdom 8939  df-fin 8940  df-dju 9893  df-card 9931  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-xnn0 12542  df-z 12556  df-uz 12820  df-fz 13482  df-fzo 13625  df-hash 14288  df-word 14462  df-concat 14518  df-s1 14543  df-s2 14796  df-s3 14797  df-trkgc 27689  df-trkgb 27690  df-trkgcb 27691  df-trkgld 27693  df-trkg 27694  df-cgrg 27752  df-leg 27824  df-mir 27894  df-rag 27935  df-perpg 27937  df-mid 28015  df-lmi 28016
This theorem is referenced by:  hypcgrlem2  28041
  Copyright terms: Public domain W3C validator