Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hypcgrlem1 Structured version   Visualization version   GIF version

Theorem hypcgrlem1 26267
 Description: Lemma for hypcgr 26269, case where triangles share a cathetus. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
hypcgr.p 𝑃 = (Base‘𝐺)
hypcgr.m = (dist‘𝐺)
hypcgr.i 𝐼 = (Itv‘𝐺)
hypcgr.g (𝜑𝐺 ∈ TarskiG)
hypcgr.h (𝜑𝐺DimTarskiG≥2)
hypcgr.a (𝜑𝐴𝑃)
hypcgr.b (𝜑𝐵𝑃)
hypcgr.c (𝜑𝐶𝑃)
hypcgr.d (𝜑𝐷𝑃)
hypcgr.e (𝜑𝐸𝑃)
hypcgr.f (𝜑𝐹𝑃)
hypcgr.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
hypcgr.2 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
hypcgr.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
hypcgr.4 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
hypcgrlem2.b (𝜑𝐵 = 𝐸)
hypcgrlem1.s 𝑆 = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
hypcgrlem1.a (𝜑𝐶 = 𝐹)
Assertion
Ref Expression
hypcgrlem1 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))

Proof of Theorem hypcgrlem1
StepHypRef Expression
1 hypcgr.p . . 3 𝑃 = (Base‘𝐺)
2 hypcgr.m . . 3 = (dist‘𝐺)
3 hypcgr.i . . 3 𝐼 = (Itv‘𝐺)
4 hypcgr.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 481 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐺 ∈ TarskiG)
6 hypcgr.c . . . 4 (𝜑𝐶𝑃)
76adantr 481 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐶𝑃)
8 hypcgr.a . . . 4 (𝜑𝐴𝑃)
98adantr 481 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐴𝑃)
10 hypcgr.f . . . 4 (𝜑𝐹𝑃)
1110adantr 481 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐹𝑃)
12 hypcgr.d . . . 4 (𝜑𝐷𝑃)
1312adantr 481 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐷𝑃)
14 eqid 2795 . . . . . . 7 (LineG‘𝐺) = (LineG‘𝐺)
15 eqid 2795 . . . . . . 7 (pInvG‘𝐺) = (pInvG‘𝐺)
16 hypcgr.b . . . . . . 7 (𝜑𝐵𝑃)
17 hypcgr.1 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
181, 2, 3, 14, 15, 4, 8, 16, 6, 17ragcom 26166 . . . . . 6 (𝜑 → ⟨“𝐶𝐵𝐴”⟩ ∈ (∟G‘𝐺))
191, 2, 3, 14, 15, 4, 6, 16, 8israg 26165 . . . . . 6 (𝜑 → (⟨“𝐶𝐵𝐴”⟩ ∈ (∟G‘𝐺) ↔ (𝐶 𝐴) = (𝐶 (((pInvG‘𝐺)‘𝐵)‘𝐴))))
2018, 19mpbid 233 . . . . 5 (𝜑 → (𝐶 𝐴) = (𝐶 (((pInvG‘𝐺)‘𝐵)‘𝐴)))
2120adantr 481 . . . 4 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐶 𝐴) = (𝐶 (((pInvG‘𝐺)‘𝐵)‘𝐴)))
22 hypcgrlem1.a . . . . . . 7 (𝜑𝐶 = 𝐹)
2322eqcomd 2801 . . . . . 6 (𝜑𝐹 = 𝐶)
2423adantr 481 . . . . 5 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐹 = 𝐶)
25 hypcgr.h . . . . . . 7 (𝜑𝐺DimTarskiG≥2)
261, 2, 3, 4, 25, 8, 12, 15, 16ismidb 26246 . . . . . 6 (𝜑 → (𝐷 = (((pInvG‘𝐺)‘𝐵)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐷) = 𝐵))
2726biimpar 478 . . . . 5 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐷 = (((pInvG‘𝐺)‘𝐵)‘𝐴))
2824, 27oveq12d 7034 . . . 4 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐹 𝐷) = (𝐶 (((pInvG‘𝐺)‘𝐵)‘𝐴)))
2921, 28eqtr4d 2834 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐶 𝐴) = (𝐹 𝐷))
301, 2, 3, 5, 7, 9, 11, 13, 29tgcgrcomlr 25948 . 2 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
31 simpr 485 . . . 4 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = 𝐷) → 𝐴 = 𝐷)
3222ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = 𝐷) → 𝐶 = 𝐹)
3331, 32oveq12d 7034 . . 3 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = 𝐷) → (𝐴 𝐶) = (𝐷 𝐹))
3417ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
354ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐺 ∈ TarskiG)
368ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴𝑃)
3716ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐵𝑃)
386ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐶𝑃)
391, 2, 3, 14, 15, 35, 36, 37, 38israg 26165 . . . . . 6 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 (((pInvG‘𝐺)‘𝐵)‘𝐶))))
4034, 39mpbid 233 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 𝐶) = (𝐴 (((pInvG‘𝐺)‘𝐵)‘𝐶)))
4125ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐺DimTarskiG≥2)
42 hypcgrlem1.s . . . . . . 7 𝑆 = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
4312ad2antrr 722 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐷𝑃)
441, 2, 3, 35, 41, 36, 43midcl 26245 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ 𝑃)
45 simplr 765 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ≠ 𝐵)
461, 3, 14, 35, 44, 37, 45tgelrnln 26098 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵) ∈ ran (LineG‘𝐺))
47 eqid 2795 . . . . . . 7 ((pInvG‘𝐺)‘𝐵) = ((pInvG‘𝐺)‘𝐵)
48 eqid 2795 . . . . . . . . 9 (cgrG‘𝐺) = (cgrG‘𝐺)
491, 2, 3, 14, 15, 35, 37, 47, 38mircl 26129 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (((pInvG‘𝐺)‘𝐵)‘𝐶) ∈ 𝑃)
50 simpr 485 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴𝐷)
511, 2, 3, 35, 41, 36, 43midbtwn 26247 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (𝐴𝐼𝐷))
521, 14, 3, 35, 36, 44, 43, 51btwncolg3 26025 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷 ∈ (𝐴(LineG‘𝐺)(𝐴(midG‘𝐺)𝐷)) ∨ 𝐴 = (𝐴(midG‘𝐺)𝐷)))
53 eqidd 2796 . . . . . . . . . . . . 13 (𝜑𝐷 = 𝐷)
54 hypcgrlem2.b . . . . . . . . . . . . 13 (𝜑𝐵 = 𝐸)
5553, 54, 22s3eqd 14062 . . . . . . . . . . . 12 (𝜑 → ⟨“𝐷𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩)
5655ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐷𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩)
57 hypcgr.2 . . . . . . . . . . . 12 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
5857ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
5956, 58eqeltrd 2883 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐷𝐵𝐶”⟩ ∈ (∟G‘𝐺))
601, 2, 3, 14, 15, 35, 43, 37, 38israg 26165 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (⟨“𝐷𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐷 𝐶) = (𝐷 (((pInvG‘𝐺)‘𝐵)‘𝐶))))
6159, 60mpbid 233 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷 𝐶) = (𝐷 (((pInvG‘𝐺)‘𝐵)‘𝐶)))
621, 14, 3, 35, 36, 43, 44, 48, 38, 49, 2, 50, 52, 40, 61lncgr 26037 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ((𝐴(midG‘𝐺)𝐷) 𝐶) = ((𝐴(midG‘𝐺)𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐶)))
631, 2, 3, 14, 15, 35, 44, 37, 38israg 26165 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (⟨“(𝐴(midG‘𝐺)𝐷)𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ ((𝐴(midG‘𝐺)𝐷) 𝐶) = ((𝐴(midG‘𝐺)𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐶))))
6462, 63mpbird 258 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“(𝐴(midG‘𝐺)𝐷)𝐵𝐶”⟩ ∈ (∟G‘𝐺))
651, 3, 14, 35, 44, 37, 45tglinerflx1 26101 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
661, 3, 14, 35, 44, 37, 45tglinerflx2 26102 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐵 ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
671, 2, 3, 35, 41, 42, 14, 46, 44, 47, 64, 65, 66, 38, 45lmimid 26262 . . . . . 6 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝑆𝐶) = (((pInvG‘𝐺)‘𝐵)‘𝐶))
6867oveq2d 7032 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 (𝑆𝐶)) = (𝐴 (((pInvG‘𝐺)‘𝐵)‘𝐶)))
6940, 68eqtr4d 2834 . . . 4 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 𝐶) = (𝐴 (𝑆𝐶)))
701, 2, 3, 35, 41, 43, 36midcom 26250 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷(midG‘𝐺)𝐴) = (𝐴(midG‘𝐺)𝐷))
7170, 65eqeltrd 2883 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷(midG‘𝐺)𝐴) ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
7250necomd 3039 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐷𝐴)
731, 3, 14, 35, 43, 36, 72tgelrnln 26098 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷(LineG‘𝐺)𝐴) ∈ ran (LineG‘𝐺))
741, 2, 3, 35, 36, 44, 43, 51tgbtwncom 25956 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (𝐷𝐼𝐴))
751, 3, 14, 35, 43, 36, 44, 72, 74btwnlng1 26087 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (𝐷(LineG‘𝐺)𝐴))
7665, 75elind 4092 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵) ∩ (𝐷(LineG‘𝐺)𝐴)))
771, 3, 14, 35, 43, 36, 72tglinerflx2 26102 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴 ∈ (𝐷(LineG‘𝐺)𝐴))
7845necomd 3039 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐵 ≠ (𝐴(midG‘𝐺)𝐷))
794ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐺 ∈ TarskiG)
808ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐴𝑃)
8112ad2antrr 722 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐷𝑃)
8225ad2antrr 722 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐺DimTarskiG≥2)
83 simpr 485 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐴 = (𝐴(midG‘𝐺)𝐷))
8483eqcomd 2801 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → (𝐴(midG‘𝐺)𝐷) = 𝐴)
851, 2, 3, 79, 82, 80, 81, 84midcgr 26248 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → (𝐴 𝐴) = (𝐴 𝐷))
8685eqcomd 2801 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → (𝐴 𝐷) = (𝐴 𝐴))
871, 2, 3, 79, 80, 81, 80, 86axtgcgrid 25931 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐴 = 𝐷)
8887ex 413 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) → (𝐴 = (𝐴(midG‘𝐺)𝐷) → 𝐴 = 𝐷))
8988necon3d 3005 . . . . . . . . . 10 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) → (𝐴𝐷𝐴 ≠ (𝐴(midG‘𝐺)𝐷)))
9089imp 407 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴 ≠ (𝐴(midG‘𝐺)𝐷))
91 hypcgr.e . . . . . . . . . . . . . 14 (𝜑𝐸𝑃)
92 hypcgr.3 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
931, 2, 3, 4, 8, 16, 12, 91, 92tgcgrcomlr 25948 . . . . . . . . . . . . 13 (𝜑 → (𝐵 𝐴) = (𝐸 𝐷))
9454oveq1d 7031 . . . . . . . . . . . . 13 (𝜑 → (𝐵 𝐷) = (𝐸 𝐷))
9593, 94eqtr4d 2834 . . . . . . . . . . . 12 (𝜑 → (𝐵 𝐴) = (𝐵 𝐷))
9695ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐵 𝐴) = (𝐵 𝐷))
97 eqidd 2796 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) = (𝐴(midG‘𝐺)𝐷))
981, 2, 3, 35, 41, 36, 43, 15, 44ismidb 26246 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴) ↔ (𝐴(midG‘𝐺)𝐷) = (𝐴(midG‘𝐺)𝐷)))
9997, 98mpbird 258 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐷 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴))
10099oveq2d 7032 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐵 𝐷) = (𝐵 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴)))
10196, 100eqtrd 2831 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐵 𝐴) = (𝐵 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴)))
1021, 2, 3, 14, 15, 35, 37, 44, 36israg 26165 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (⟨“𝐵(𝐴(midG‘𝐺)𝐷)𝐴”⟩ ∈ (∟G‘𝐺) ↔ (𝐵 𝐴) = (𝐵 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴))))
103101, 102mpbird 258 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐵(𝐴(midG‘𝐺)𝐷)𝐴”⟩ ∈ (∟G‘𝐺))
1041, 2, 3, 14, 35, 46, 73, 76, 66, 77, 78, 90, 103ragperp 26185 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐷(LineG‘𝐺)𝐴))
105104orcd 870 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐷(LineG‘𝐺)𝐴) ∨ 𝐷 = 𝐴))
1061, 2, 3, 35, 41, 42, 14, 46, 43, 36islmib 26255 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 = (𝑆𝐷) ↔ ((𝐷(midG‘𝐺)𝐴) ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵) ∧ (((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐷(LineG‘𝐺)𝐴) ∨ 𝐷 = 𝐴))))
10771, 105, 106mpbir2and 709 . . . . . 6 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴 = (𝑆𝐷))
108107oveq1d 7031 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 (𝑆𝐶)) = ((𝑆𝐷) (𝑆𝐶)))
1091, 2, 3, 35, 41, 42, 14, 46, 43, 38lmiiso 26265 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ((𝑆𝐷) (𝑆𝐶)) = (𝐷 𝐶))
11022oveq2d 7032 . . . . . 6 (𝜑 → (𝐷 𝐶) = (𝐷 𝐹))
111110ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷 𝐶) = (𝐷 𝐹))
112108, 109, 1113eqtrd 2835 . . . 4 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 (𝑆𝐶)) = (𝐷 𝐹))
11369, 112eqtrd 2831 . . 3 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 𝐶) = (𝐷 𝐹))
11433, 113pm2.61dane 3072 . 2 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
11530, 114pm2.61dane 3072 1 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 396   ∨ wo 842   = wceq 1522   ∈ wcel 2081   ≠ wne 2984   class class class wbr 4962  ‘cfv 6225  (class class class)co 7016  2c2 11540  ⟨“cs3 14040  Basecbs 16312  distcds 16403  TarskiGcstrkg 25898  DimTarskiG≥cstrkgld 25902  Itvcitv 25904  LineGclng 25905  cgrGccgrg 25978  pInvGcmir 26120  ∟Gcrag 26161  ⟂Gcperpg 26163  midGcmid 26240  lInvGclmi 26241 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-map 8258  df-pm 8259  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-dju 9176  df-card 9214  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-xnn0 11816  df-z 11830  df-uz 12094  df-fz 12743  df-fzo 12884  df-hash 13541  df-word 13708  df-concat 13769  df-s1 13794  df-s2 14046  df-s3 14047  df-trkgc 25916  df-trkgb 25917  df-trkgcb 25918  df-trkgld 25920  df-trkg 25921  df-cgrg 25979  df-leg 26051  df-mir 26121  df-rag 26162  df-perpg 26164  df-mid 26242  df-lmi 26243 This theorem is referenced by:  hypcgrlem2  26268
 Copyright terms: Public domain W3C validator