MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hypcgrlem1 Structured version   Visualization version   GIF version

Theorem hypcgrlem1 28702
Description: Lemma for hypcgr 28704, case where triangles share a cathetus. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
hypcgr.p 𝑃 = (Base‘𝐺)
hypcgr.m = (dist‘𝐺)
hypcgr.i 𝐼 = (Itv‘𝐺)
hypcgr.g (𝜑𝐺 ∈ TarskiG)
hypcgr.h (𝜑𝐺DimTarskiG≥2)
hypcgr.a (𝜑𝐴𝑃)
hypcgr.b (𝜑𝐵𝑃)
hypcgr.c (𝜑𝐶𝑃)
hypcgr.d (𝜑𝐷𝑃)
hypcgr.e (𝜑𝐸𝑃)
hypcgr.f (𝜑𝐹𝑃)
hypcgr.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
hypcgr.2 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
hypcgr.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
hypcgr.4 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
hypcgrlem2.b (𝜑𝐵 = 𝐸)
hypcgrlem1.s 𝑆 = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
hypcgrlem1.a (𝜑𝐶 = 𝐹)
Assertion
Ref Expression
hypcgrlem1 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))

Proof of Theorem hypcgrlem1
StepHypRef Expression
1 hypcgr.p . . 3 𝑃 = (Base‘𝐺)
2 hypcgr.m . . 3 = (dist‘𝐺)
3 hypcgr.i . . 3 𝐼 = (Itv‘𝐺)
4 hypcgr.g . . . 4 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐺 ∈ TarskiG)
6 hypcgr.c . . . 4 (𝜑𝐶𝑃)
76adantr 480 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐶𝑃)
8 hypcgr.a . . . 4 (𝜑𝐴𝑃)
98adantr 480 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐴𝑃)
10 hypcgr.f . . . 4 (𝜑𝐹𝑃)
1110adantr 480 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐹𝑃)
12 hypcgr.d . . . 4 (𝜑𝐷𝑃)
1312adantr 480 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐷𝑃)
14 eqid 2729 . . . . . . 7 (LineG‘𝐺) = (LineG‘𝐺)
15 eqid 2729 . . . . . . 7 (pInvG‘𝐺) = (pInvG‘𝐺)
16 hypcgr.b . . . . . . 7 (𝜑𝐵𝑃)
17 hypcgr.1 . . . . . . 7 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
181, 2, 3, 14, 15, 4, 8, 16, 6, 17ragcom 28601 . . . . . 6 (𝜑 → ⟨“𝐶𝐵𝐴”⟩ ∈ (∟G‘𝐺))
191, 2, 3, 14, 15, 4, 6, 16, 8israg 28600 . . . . . 6 (𝜑 → (⟨“𝐶𝐵𝐴”⟩ ∈ (∟G‘𝐺) ↔ (𝐶 𝐴) = (𝐶 (((pInvG‘𝐺)‘𝐵)‘𝐴))))
2018, 19mpbid 232 . . . . 5 (𝜑 → (𝐶 𝐴) = (𝐶 (((pInvG‘𝐺)‘𝐵)‘𝐴)))
2120adantr 480 . . . 4 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐶 𝐴) = (𝐶 (((pInvG‘𝐺)‘𝐵)‘𝐴)))
22 hypcgrlem1.a . . . . . . 7 (𝜑𝐶 = 𝐹)
2322eqcomd 2735 . . . . . 6 (𝜑𝐹 = 𝐶)
2423adantr 480 . . . . 5 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐹 = 𝐶)
25 hypcgr.h . . . . . . 7 (𝜑𝐺DimTarskiG≥2)
261, 2, 3, 4, 25, 8, 12, 15, 16ismidb 28681 . . . . . 6 (𝜑 → (𝐷 = (((pInvG‘𝐺)‘𝐵)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐷) = 𝐵))
2726biimpar 477 . . . . 5 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐷 = (((pInvG‘𝐺)‘𝐵)‘𝐴))
2824, 27oveq12d 7387 . . . 4 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐹 𝐷) = (𝐶 (((pInvG‘𝐺)‘𝐵)‘𝐴)))
2921, 28eqtr4d 2767 . . 3 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐶 𝐴) = (𝐹 𝐷))
301, 2, 3, 5, 7, 9, 11, 13, 29tgcgrcomlr 28383 . 2 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
31 simpr 484 . . . 4 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = 𝐷) → 𝐴 = 𝐷)
3222ad2antrr 726 . . . 4 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = 𝐷) → 𝐶 = 𝐹)
3331, 32oveq12d 7387 . . 3 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = 𝐷) → (𝐴 𝐶) = (𝐷 𝐹))
3417ad2antrr 726 . . . . . 6 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
354ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐺 ∈ TarskiG)
368ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴𝑃)
3716ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐵𝑃)
386ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐶𝑃)
391, 2, 3, 14, 15, 35, 36, 37, 38israg 28600 . . . . . 6 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 (((pInvG‘𝐺)‘𝐵)‘𝐶))))
4034, 39mpbid 232 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 𝐶) = (𝐴 (((pInvG‘𝐺)‘𝐵)‘𝐶)))
4125ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐺DimTarskiG≥2)
42 hypcgrlem1.s . . . . . . 7 𝑆 = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
4312ad2antrr 726 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐷𝑃)
441, 2, 3, 35, 41, 36, 43midcl 28680 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ 𝑃)
45 simplr 768 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ≠ 𝐵)
461, 3, 14, 35, 44, 37, 45tgelrnln 28533 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵) ∈ ran (LineG‘𝐺))
47 eqid 2729 . . . . . . 7 ((pInvG‘𝐺)‘𝐵) = ((pInvG‘𝐺)‘𝐵)
48 eqid 2729 . . . . . . . . 9 (cgrG‘𝐺) = (cgrG‘𝐺)
491, 2, 3, 14, 15, 35, 37, 47, 38mircl 28564 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (((pInvG‘𝐺)‘𝐵)‘𝐶) ∈ 𝑃)
50 simpr 484 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴𝐷)
511, 2, 3, 35, 41, 36, 43midbtwn 28682 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (𝐴𝐼𝐷))
521, 14, 3, 35, 36, 44, 43, 51btwncolg3 28460 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷 ∈ (𝐴(LineG‘𝐺)(𝐴(midG‘𝐺)𝐷)) ∨ 𝐴 = (𝐴(midG‘𝐺)𝐷)))
53 eqidd 2730 . . . . . . . . . . . . 13 (𝜑𝐷 = 𝐷)
54 hypcgrlem2.b . . . . . . . . . . . . 13 (𝜑𝐵 = 𝐸)
5553, 54, 22s3eqd 14806 . . . . . . . . . . . 12 (𝜑 → ⟨“𝐷𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩)
5655ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐷𝐵𝐶”⟩ = ⟨“𝐷𝐸𝐹”⟩)
57 hypcgr.2 . . . . . . . . . . . 12 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
5857ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
5956, 58eqeltrd 2828 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐷𝐵𝐶”⟩ ∈ (∟G‘𝐺))
601, 2, 3, 14, 15, 35, 43, 37, 38israg 28600 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (⟨“𝐷𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐷 𝐶) = (𝐷 (((pInvG‘𝐺)‘𝐵)‘𝐶))))
6159, 60mpbid 232 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷 𝐶) = (𝐷 (((pInvG‘𝐺)‘𝐵)‘𝐶)))
621, 14, 3, 35, 36, 43, 44, 48, 38, 49, 2, 50, 52, 40, 61lncgr 28472 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ((𝐴(midG‘𝐺)𝐷) 𝐶) = ((𝐴(midG‘𝐺)𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐶)))
631, 2, 3, 14, 15, 35, 44, 37, 38israg 28600 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (⟨“(𝐴(midG‘𝐺)𝐷)𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ ((𝐴(midG‘𝐺)𝐷) 𝐶) = ((𝐴(midG‘𝐺)𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐶))))
6462, 63mpbird 257 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“(𝐴(midG‘𝐺)𝐷)𝐵𝐶”⟩ ∈ (∟G‘𝐺))
651, 3, 14, 35, 44, 37, 45tglinerflx1 28536 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
661, 3, 14, 35, 44, 37, 45tglinerflx2 28537 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐵 ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
671, 2, 3, 35, 41, 42, 14, 46, 44, 47, 64, 65, 66, 38, 45lmimid 28697 . . . . . 6 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝑆𝐶) = (((pInvG‘𝐺)‘𝐵)‘𝐶))
6867oveq2d 7385 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 (𝑆𝐶)) = (𝐴 (((pInvG‘𝐺)‘𝐵)‘𝐶)))
6940, 68eqtr4d 2767 . . . 4 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 𝐶) = (𝐴 (𝑆𝐶)))
701, 2, 3, 35, 41, 43, 36midcom 28685 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷(midG‘𝐺)𝐴) = (𝐴(midG‘𝐺)𝐷))
7170, 65eqeltrd 2828 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷(midG‘𝐺)𝐴) ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
7250necomd 2980 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐷𝐴)
731, 3, 14, 35, 43, 36, 72tgelrnln 28533 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷(LineG‘𝐺)𝐴) ∈ ran (LineG‘𝐺))
741, 2, 3, 35, 36, 44, 43, 51tgbtwncom 28391 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (𝐷𝐼𝐴))
751, 3, 14, 35, 43, 36, 44, 72, 74btwnlng1 28522 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (𝐷(LineG‘𝐺)𝐴))
7665, 75elind 4159 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵) ∩ (𝐷(LineG‘𝐺)𝐴)))
771, 3, 14, 35, 43, 36, 72tglinerflx2 28537 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴 ∈ (𝐷(LineG‘𝐺)𝐴))
7845necomd 2980 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐵 ≠ (𝐴(midG‘𝐺)𝐷))
794ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐺 ∈ TarskiG)
808ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐴𝑃)
8112ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐷𝑃)
8225ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐺DimTarskiG≥2)
83 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐴 = (𝐴(midG‘𝐺)𝐷))
8483eqcomd 2735 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → (𝐴(midG‘𝐺)𝐷) = 𝐴)
851, 2, 3, 79, 82, 80, 81, 84midcgr 28683 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → (𝐴 𝐴) = (𝐴 𝐷))
8685eqcomd 2735 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → (𝐴 𝐷) = (𝐴 𝐴))
871, 2, 3, 79, 80, 81, 80, 86axtgcgrid 28366 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐴 = 𝐷)
8887ex 412 . . . . . . . . . . 11 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) → (𝐴 = (𝐴(midG‘𝐺)𝐷) → 𝐴 = 𝐷))
8988necon3d 2946 . . . . . . . . . 10 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) → (𝐴𝐷𝐴 ≠ (𝐴(midG‘𝐺)𝐷)))
9089imp 406 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴 ≠ (𝐴(midG‘𝐺)𝐷))
91 hypcgr.e . . . . . . . . . . . . . 14 (𝜑𝐸𝑃)
92 hypcgr.3 . . . . . . . . . . . . . 14 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
931, 2, 3, 4, 8, 16, 12, 91, 92tgcgrcomlr 28383 . . . . . . . . . . . . 13 (𝜑 → (𝐵 𝐴) = (𝐸 𝐷))
9454oveq1d 7384 . . . . . . . . . . . . 13 (𝜑 → (𝐵 𝐷) = (𝐸 𝐷))
9593, 94eqtr4d 2767 . . . . . . . . . . . 12 (𝜑 → (𝐵 𝐴) = (𝐵 𝐷))
9695ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐵 𝐴) = (𝐵 𝐷))
97 eqidd 2730 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴(midG‘𝐺)𝐷) = (𝐴(midG‘𝐺)𝐷))
981, 2, 3, 35, 41, 36, 43, 15, 44ismidb 28681 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴) ↔ (𝐴(midG‘𝐺)𝐷) = (𝐴(midG‘𝐺)𝐷)))
9997, 98mpbird 257 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐷 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴))
10099oveq2d 7385 . . . . . . . . . . 11 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐵 𝐷) = (𝐵 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴)))
10196, 100eqtrd 2764 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐵 𝐴) = (𝐵 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴)))
1021, 2, 3, 14, 15, 35, 37, 44, 36israg 28600 . . . . . . . . . 10 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (⟨“𝐵(𝐴(midG‘𝐺)𝐷)𝐴”⟩ ∈ (∟G‘𝐺) ↔ (𝐵 𝐴) = (𝐵 (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴))))
103101, 102mpbird 257 . . . . . . . . 9 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ⟨“𝐵(𝐴(midG‘𝐺)𝐷)𝐴”⟩ ∈ (∟G‘𝐺))
1041, 2, 3, 14, 35, 46, 73, 76, 66, 77, 78, 90, 103ragperp 28620 . . . . . . . 8 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐷(LineG‘𝐺)𝐴))
105104orcd 873 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐷(LineG‘𝐺)𝐴) ∨ 𝐷 = 𝐴))
1061, 2, 3, 35, 41, 42, 14, 46, 43, 36islmib 28690 . . . . . . 7 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 = (𝑆𝐷) ↔ ((𝐷(midG‘𝐺)𝐴) ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵) ∧ (((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐷(LineG‘𝐺)𝐴) ∨ 𝐷 = 𝐴))))
10771, 105, 106mpbir2and 713 . . . . . 6 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → 𝐴 = (𝑆𝐷))
108107oveq1d 7384 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 (𝑆𝐶)) = ((𝑆𝐷) (𝑆𝐶)))
1091, 2, 3, 35, 41, 42, 14, 46, 43, 38lmiiso 28700 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → ((𝑆𝐷) (𝑆𝐶)) = (𝐷 𝐶))
11022oveq2d 7385 . . . . . 6 (𝜑 → (𝐷 𝐶) = (𝐷 𝐹))
111110ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐷 𝐶) = (𝐷 𝐹))
112108, 109, 1113eqtrd 2768 . . . 4 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 (𝑆𝐶)) = (𝐷 𝐹))
11369, 112eqtrd 2764 . . 3 (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴𝐷) → (𝐴 𝐶) = (𝐷 𝐹))
11433, 113pm2.61dane 3012 . 2 ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
11530, 114pm2.61dane 3012 1 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  2c2 12217  ⟨“cs3 14784  Basecbs 17155  distcds 17205  TarskiGcstrkg 28330  DimTarskiGcstrkgld 28334  Itvcitv 28336  LineGclng 28337  cgrGccgrg 28413  pInvGcmir 28555  ∟Gcrag 28596  ⟂Gcperpg 28598  midGcmid 28675  lInvGclmi 28676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9830  df-card 9868  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-n0 12419  df-xnn0 12492  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592  df-hash 14272  df-word 14455  df-concat 14512  df-s1 14537  df-s2 14790  df-s3 14791  df-trkgc 28351  df-trkgb 28352  df-trkgcb 28353  df-trkgld 28355  df-trkg 28356  df-cgrg 28414  df-leg 28486  df-mir 28556  df-rag 28597  df-perpg 28599  df-mid 28677  df-lmi 28678
This theorem is referenced by:  hypcgrlem2  28703
  Copyright terms: Public domain W3C validator