Proof of Theorem hypcgrlem1
| Step | Hyp | Ref
| Expression |
| 1 | | hypcgr.p |
. . 3
⊢ 𝑃 = (Base‘𝐺) |
| 2 | | hypcgr.m |
. . 3
⊢ − =
(dist‘𝐺) |
| 3 | | hypcgr.i |
. . 3
⊢ 𝐼 = (Itv‘𝐺) |
| 4 | | hypcgr.g |
. . . 4
⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| 5 | 4 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐺 ∈ TarskiG) |
| 6 | | hypcgr.c |
. . . 4
⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| 7 | 6 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐶 ∈ 𝑃) |
| 8 | | hypcgr.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| 9 | 8 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐴 ∈ 𝑃) |
| 10 | | hypcgr.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| 11 | 10 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐹 ∈ 𝑃) |
| 12 | | hypcgr.d |
. . . 4
⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| 13 | 12 | adantr 480 |
. . 3
⊢ ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐷 ∈ 𝑃) |
| 14 | | eqid 2734 |
. . . . . . 7
⊢
(LineG‘𝐺) =
(LineG‘𝐺) |
| 15 | | eqid 2734 |
. . . . . . 7
⊢
(pInvG‘𝐺) =
(pInvG‘𝐺) |
| 16 | | hypcgr.b |
. . . . . . 7
⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| 17 | | hypcgr.1 |
. . . . . . 7
⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| 18 | 1, 2, 3, 14, 15, 4, 8, 16, 6,
17 | ragcom 28641 |
. . . . . 6
⊢ (𝜑 → 〈“𝐶𝐵𝐴”〉 ∈ (∟G‘𝐺)) |
| 19 | 1, 2, 3, 14, 15, 4, 6, 16, 8 | israg 28640 |
. . . . . 6
⊢ (𝜑 → (〈“𝐶𝐵𝐴”〉 ∈ (∟G‘𝐺) ↔ (𝐶 − 𝐴) = (𝐶 − (((pInvG‘𝐺)‘𝐵)‘𝐴)))) |
| 20 | 18, 19 | mpbid 232 |
. . . . 5
⊢ (𝜑 → (𝐶 − 𝐴) = (𝐶 − (((pInvG‘𝐺)‘𝐵)‘𝐴))) |
| 21 | 20 | adantr 480 |
. . . 4
⊢ ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐶 − 𝐴) = (𝐶 − (((pInvG‘𝐺)‘𝐵)‘𝐴))) |
| 22 | | hypcgrlem1.a |
. . . . . . 7
⊢ (𝜑 → 𝐶 = 𝐹) |
| 23 | 22 | eqcomd 2740 |
. . . . . 6
⊢ (𝜑 → 𝐹 = 𝐶) |
| 24 | 23 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐹 = 𝐶) |
| 25 | | hypcgr.h |
. . . . . . 7
⊢ (𝜑 → 𝐺DimTarskiG≥2) |
| 26 | 1, 2, 3, 4, 25, 8,
12, 15, 16 | ismidb 28721 |
. . . . . 6
⊢ (𝜑 → (𝐷 = (((pInvG‘𝐺)‘𝐵)‘𝐴) ↔ (𝐴(midG‘𝐺)𝐷) = 𝐵)) |
| 27 | 26 | biimpar 477 |
. . . . 5
⊢ ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → 𝐷 = (((pInvG‘𝐺)‘𝐵)‘𝐴)) |
| 28 | 24, 27 | oveq12d 7430 |
. . . 4
⊢ ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐹 − 𝐷) = (𝐶 − (((pInvG‘𝐺)‘𝐵)‘𝐴))) |
| 29 | 21, 28 | eqtr4d 2772 |
. . 3
⊢ ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐶 − 𝐴) = (𝐹 − 𝐷)) |
| 30 | 1, 2, 3, 5, 7, 9, 11, 13, 29 | tgcgrcomlr 28423 |
. 2
⊢ ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) = 𝐵) → (𝐴 − 𝐶) = (𝐷 − 𝐹)) |
| 31 | | simpr 484 |
. . . 4
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = 𝐷) → 𝐴 = 𝐷) |
| 32 | 22 | ad2antrr 726 |
. . . 4
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = 𝐷) → 𝐶 = 𝐹) |
| 33 | 31, 32 | oveq12d 7430 |
. . 3
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = 𝐷) → (𝐴 − 𝐶) = (𝐷 − 𝐹)) |
| 34 | 17 | ad2antrr 726 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| 35 | 4 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → 𝐺 ∈ TarskiG) |
| 36 | 8 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → 𝐴 ∈ 𝑃) |
| 37 | 16 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → 𝐵 ∈ 𝑃) |
| 38 | 6 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → 𝐶 ∈ 𝑃) |
| 39 | 1, 2, 3, 14, 15, 35, 36, 37, 38 | israg 28640 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (𝐴 − 𝐶) = (𝐴 − (((pInvG‘𝐺)‘𝐵)‘𝐶)))) |
| 40 | 34, 39 | mpbid 232 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐴 − 𝐶) = (𝐴 − (((pInvG‘𝐺)‘𝐵)‘𝐶))) |
| 41 | 25 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → 𝐺DimTarskiG≥2) |
| 42 | | hypcgrlem1.s |
. . . . . . 7
⊢ 𝑆 = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)) |
| 43 | 12 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → 𝐷 ∈ 𝑃) |
| 44 | 1, 2, 3, 35, 41, 36, 43 | midcl 28720 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ 𝑃) |
| 45 | | simplr 768 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) |
| 46 | 1, 3, 14, 35, 44, 37, 45 | tgelrnln 28573 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵) ∈ ran (LineG‘𝐺)) |
| 47 | | eqid 2734 |
. . . . . . 7
⊢
((pInvG‘𝐺)‘𝐵) = ((pInvG‘𝐺)‘𝐵) |
| 48 | | eqid 2734 |
. . . . . . . . 9
⊢
(cgrG‘𝐺) =
(cgrG‘𝐺) |
| 49 | 1, 2, 3, 14, 15, 35, 37, 47, 38 | mircl 28604 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (((pInvG‘𝐺)‘𝐵)‘𝐶) ∈ 𝑃) |
| 50 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → 𝐴 ≠ 𝐷) |
| 51 | 1, 2, 3, 35, 41, 36, 43 | midbtwn 28722 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (𝐴𝐼𝐷)) |
| 52 | 1, 14, 3, 35, 36, 44, 43, 51 | btwncolg3 28500 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐷 ∈ (𝐴(LineG‘𝐺)(𝐴(midG‘𝐺)𝐷)) ∨ 𝐴 = (𝐴(midG‘𝐺)𝐷))) |
| 53 | | eqidd 2735 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐷 = 𝐷) |
| 54 | | hypcgrlem2.b |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 = 𝐸) |
| 55 | 53, 54, 22 | s3eqd 14884 |
. . . . . . . . . . . 12
⊢ (𝜑 → 〈“𝐷𝐵𝐶”〉 = 〈“𝐷𝐸𝐹”〉) |
| 56 | 55 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → 〈“𝐷𝐵𝐶”〉 = 〈“𝐷𝐸𝐹”〉) |
| 57 | | hypcgr.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 〈“𝐷𝐸𝐹”〉 ∈ (∟G‘𝐺)) |
| 58 | 57 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → 〈“𝐷𝐸𝐹”〉 ∈ (∟G‘𝐺)) |
| 59 | 56, 58 | eqeltrd 2833 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → 〈“𝐷𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| 60 | 1, 2, 3, 14, 15, 35, 43, 37, 38 | israg 28640 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (〈“𝐷𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ (𝐷 − 𝐶) = (𝐷 − (((pInvG‘𝐺)‘𝐵)‘𝐶)))) |
| 61 | 59, 60 | mpbid 232 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐷 − 𝐶) = (𝐷 − (((pInvG‘𝐺)‘𝐵)‘𝐶))) |
| 62 | 1, 14, 3, 35, 36, 43, 44, 48, 38, 49, 2, 50, 52, 40, 61 | lncgr 28512 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → ((𝐴(midG‘𝐺)𝐷) − 𝐶) = ((𝐴(midG‘𝐺)𝐷) − (((pInvG‘𝐺)‘𝐵)‘𝐶))) |
| 63 | 1, 2, 3, 14, 15, 35, 44, 37, 38 | israg 28640 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (〈“(𝐴(midG‘𝐺)𝐷)𝐵𝐶”〉 ∈ (∟G‘𝐺) ↔ ((𝐴(midG‘𝐺)𝐷) − 𝐶) = ((𝐴(midG‘𝐺)𝐷) − (((pInvG‘𝐺)‘𝐵)‘𝐶)))) |
| 64 | 62, 63 | mpbird 257 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → 〈“(𝐴(midG‘𝐺)𝐷)𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
| 65 | 1, 3, 14, 35, 44, 37, 45 | tglinerflx1 28576 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)) |
| 66 | 1, 3, 14, 35, 44, 37, 45 | tglinerflx2 28577 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → 𝐵 ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)) |
| 67 | 1, 2, 3, 35, 41, 42, 14, 46, 44, 47, 64, 65, 66, 38, 45 | lmimid 28737 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝑆‘𝐶) = (((pInvG‘𝐺)‘𝐵)‘𝐶)) |
| 68 | 67 | oveq2d 7428 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐴 − (𝑆‘𝐶)) = (𝐴 − (((pInvG‘𝐺)‘𝐵)‘𝐶))) |
| 69 | 40, 68 | eqtr4d 2772 |
. . . 4
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐴 − 𝐶) = (𝐴 − (𝑆‘𝐶))) |
| 70 | 1, 2, 3, 35, 41, 43, 36 | midcom 28725 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐷(midG‘𝐺)𝐴) = (𝐴(midG‘𝐺)𝐷)) |
| 71 | 70, 65 | eqeltrd 2833 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐷(midG‘𝐺)𝐴) ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)) |
| 72 | 50 | necomd 2986 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → 𝐷 ≠ 𝐴) |
| 73 | 1, 3, 14, 35, 43, 36, 72 | tgelrnln 28573 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐷(LineG‘𝐺)𝐴) ∈ ran (LineG‘𝐺)) |
| 74 | 1, 2, 3, 35, 36, 44, 43, 51 | tgbtwncom 28431 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (𝐷𝐼𝐴)) |
| 75 | 1, 3, 14, 35, 43, 36, 44, 72, 74 | btwnlng1 28562 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (𝐷(LineG‘𝐺)𝐴)) |
| 76 | 65, 75 | elind 4180 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐴(midG‘𝐺)𝐷) ∈ (((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵) ∩ (𝐷(LineG‘𝐺)𝐴))) |
| 77 | 1, 3, 14, 35, 43, 36, 72 | tglinerflx2 28577 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → 𝐴 ∈ (𝐷(LineG‘𝐺)𝐴)) |
| 78 | 45 | necomd 2986 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → 𝐵 ≠ (𝐴(midG‘𝐺)𝐷)) |
| 79 | 4 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐺 ∈ TarskiG) |
| 80 | 8 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐴 ∈ 𝑃) |
| 81 | 12 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐷 ∈ 𝑃) |
| 82 | 25 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐺DimTarskiG≥2) |
| 83 | | simpr 484 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐴 = (𝐴(midG‘𝐺)𝐷)) |
| 84 | 83 | eqcomd 2740 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → (𝐴(midG‘𝐺)𝐷) = 𝐴) |
| 85 | 1, 2, 3, 79, 82, 80, 81, 84 | midcgr 28723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → (𝐴 − 𝐴) = (𝐴 − 𝐷)) |
| 86 | 85 | eqcomd 2740 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → (𝐴 − 𝐷) = (𝐴 − 𝐴)) |
| 87 | 1, 2, 3, 79, 80, 81, 80, 86 | axtgcgrid 28406 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 = (𝐴(midG‘𝐺)𝐷)) → 𝐴 = 𝐷) |
| 88 | 87 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) → (𝐴 = (𝐴(midG‘𝐺)𝐷) → 𝐴 = 𝐷)) |
| 89 | 88 | necon3d 2952 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) → (𝐴 ≠ 𝐷 → 𝐴 ≠ (𝐴(midG‘𝐺)𝐷))) |
| 90 | 89 | imp 406 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → 𝐴 ≠ (𝐴(midG‘𝐺)𝐷)) |
| 91 | | hypcgr.e |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| 92 | | hypcgr.3 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝐴 − 𝐵) = (𝐷 − 𝐸)) |
| 93 | 1, 2, 3, 4, 8, 16,
12, 91, 92 | tgcgrcomlr 28423 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 − 𝐴) = (𝐸 − 𝐷)) |
| 94 | 54 | oveq1d 7427 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐵 − 𝐷) = (𝐸 − 𝐷)) |
| 95 | 93, 94 | eqtr4d 2772 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐵 − 𝐴) = (𝐵 − 𝐷)) |
| 96 | 95 | ad2antrr 726 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐵 − 𝐴) = (𝐵 − 𝐷)) |
| 97 | | eqidd 2735 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐴(midG‘𝐺)𝐷) = (𝐴(midG‘𝐺)𝐷)) |
| 98 | 1, 2, 3, 35, 41, 36, 43, 15, 44 | ismidb 28721 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐷 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴) ↔ (𝐴(midG‘𝐺)𝐷) = (𝐴(midG‘𝐺)𝐷))) |
| 99 | 97, 98 | mpbird 257 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → 𝐷 = (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴)) |
| 100 | 99 | oveq2d 7428 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐵 − 𝐷) = (𝐵 − (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴))) |
| 101 | 96, 100 | eqtrd 2769 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐵 − 𝐴) = (𝐵 − (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴))) |
| 102 | 1, 2, 3, 14, 15, 35, 37, 44, 36 | israg 28640 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (〈“𝐵(𝐴(midG‘𝐺)𝐷)𝐴”〉 ∈ (∟G‘𝐺) ↔ (𝐵 − 𝐴) = (𝐵 − (((pInvG‘𝐺)‘(𝐴(midG‘𝐺)𝐷))‘𝐴)))) |
| 103 | 101, 102 | mpbird 257 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → 〈“𝐵(𝐴(midG‘𝐺)𝐷)𝐴”〉 ∈ (∟G‘𝐺)) |
| 104 | 1, 2, 3, 14, 35, 46, 73, 76, 66, 77, 78, 90, 103 | ragperp 28660 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐷(LineG‘𝐺)𝐴)) |
| 105 | 104 | orcd 873 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐷(LineG‘𝐺)𝐴) ∨ 𝐷 = 𝐴)) |
| 106 | 1, 2, 3, 35, 41, 42, 14, 46, 43, 36 | islmib 28730 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐴 = (𝑆‘𝐷) ↔ ((𝐷(midG‘𝐺)𝐴) ∈ ((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵) ∧ (((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐷(LineG‘𝐺)𝐴) ∨ 𝐷 = 𝐴)))) |
| 107 | 71, 105, 106 | mpbir2and 713 |
. . . . . 6
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → 𝐴 = (𝑆‘𝐷)) |
| 108 | 107 | oveq1d 7427 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐴 − (𝑆‘𝐶)) = ((𝑆‘𝐷) − (𝑆‘𝐶))) |
| 109 | 1, 2, 3, 35, 41, 42, 14, 46, 43, 38 | lmiiso 28740 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → ((𝑆‘𝐷) − (𝑆‘𝐶)) = (𝐷 − 𝐶)) |
| 110 | 22 | oveq2d 7428 |
. . . . . 6
⊢ (𝜑 → (𝐷 − 𝐶) = (𝐷 − 𝐹)) |
| 111 | 110 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐷 − 𝐶) = (𝐷 − 𝐹)) |
| 112 | 108, 109,
111 | 3eqtrd 2773 |
. . . 4
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐴 − (𝑆‘𝐶)) = (𝐷 − 𝐹)) |
| 113 | 69, 112 | eqtrd 2769 |
. . 3
⊢ (((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) ∧ 𝐴 ≠ 𝐷) → (𝐴 − 𝐶) = (𝐷 − 𝐹)) |
| 114 | 33, 113 | pm2.61dane 3018 |
. 2
⊢ ((𝜑 ∧ (𝐴(midG‘𝐺)𝐷) ≠ 𝐵) → (𝐴 − 𝐶) = (𝐷 − 𝐹)) |
| 115 | 30, 114 | pm2.61dane 3018 |
1
⊢ (𝜑 → (𝐴 − 𝐶) = (𝐷 − 𝐹)) |