MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  colperpexlem1 Structured version   Visualization version   GIF version

Theorem colperpexlem1 26524
Description: Lemma for colperp 26523. First part of lemma 8.20 of [Schwabhauser] p. 62. (Contributed by Thierry Arnoux, 27-Oct-2019.)
Hypotheses
Ref Expression
colperpex.p 𝑃 = (Base‘𝐺)
colperpex.d = (dist‘𝐺)
colperpex.i 𝐼 = (Itv‘𝐺)
colperpex.l 𝐿 = (LineG‘𝐺)
colperpex.g (𝜑𝐺 ∈ TarskiG)
colperpexlem.s 𝑆 = (pInvG‘𝐺)
colperpexlem.m 𝑀 = (𝑆𝐴)
colperpexlem.n 𝑁 = (𝑆𝐵)
colperpexlem.k 𝐾 = (𝑆𝑄)
colperpexlem.a (𝜑𝐴𝑃)
colperpexlem.b (𝜑𝐵𝑃)
colperpexlem.c (𝜑𝐶𝑃)
colperpexlem.q (𝜑𝑄𝑃)
colperpexlem.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
colperpexlem.2 (𝜑 → (𝐾‘(𝑀𝐶)) = (𝑁𝐶))
Assertion
Ref Expression
colperpexlem1 (𝜑 → ⟨“𝐵𝐴𝑄”⟩ ∈ (∟G‘𝐺))

Proof of Theorem colperpexlem1
StepHypRef Expression
1 colperpex.p . . . 4 𝑃 = (Base‘𝐺)
2 colperpex.d . . . 4 = (dist‘𝐺)
3 colperpex.i . . . 4 𝐼 = (Itv‘𝐺)
4 colperpex.g . . . 4 (𝜑𝐺 ∈ TarskiG)
5 colperpexlem.q . . . 4 (𝜑𝑄𝑃)
6 colperpexlem.b . . . 4 (𝜑𝐵𝑃)
7 colperpex.l . . . . 5 𝐿 = (LineG‘𝐺)
8 colperpexlem.s . . . . 5 𝑆 = (pInvG‘𝐺)
9 colperpexlem.a . . . . 5 (𝜑𝐴𝑃)
10 colperpexlem.m . . . . 5 𝑀 = (𝑆𝐴)
111, 2, 3, 7, 8, 4, 9, 10, 5mircl 26455 . . . 4 (𝜑 → (𝑀𝑄) ∈ 𝑃)
12 colperpexlem.c . . . . . 6 (𝜑𝐶𝑃)
131, 2, 3, 7, 8, 4, 9, 10, 12mircl 26455 . . . . 5 (𝜑 → (𝑀𝐶) ∈ 𝑃)
14 eqid 2798 . . . . . 6 (𝑆𝐵) = (𝑆𝐵)
151, 2, 3, 7, 8, 4, 6, 14, 12mircl 26455 . . . . 5 (𝜑 → ((𝑆𝐵)‘𝐶) ∈ 𝑃)
161, 2, 3, 7, 8, 4, 9, 10, 15mircl 26455 . . . . 5 (𝜑 → (𝑀‘((𝑆𝐵)‘𝐶)) ∈ 𝑃)
17 colperpexlem.2 . . . . . . . 8 (𝜑 → (𝐾‘(𝑀𝐶)) = (𝑁𝐶))
18 colperpexlem.n . . . . . . . . 9 𝑁 = (𝑆𝐵)
191, 2, 3, 7, 8, 4, 6, 18, 12mircl 26455 . . . . . . . 8 (𝜑 → (𝑁𝐶) ∈ 𝑃)
2017, 19eqeltrd 2890 . . . . . . 7 (𝜑 → (𝐾‘(𝑀𝐶)) ∈ 𝑃)
21 colperpexlem.k . . . . . . . 8 𝐾 = (𝑆𝑄)
221, 2, 3, 7, 8, 4, 5, 21, 13mirbtwn 26452 . . . . . . 7 (𝜑𝑄 ∈ ((𝐾‘(𝑀𝐶))𝐼(𝑀𝐶)))
231, 2, 3, 4, 20, 5, 13, 22tgbtwncom 26282 . . . . . 6 (𝜑𝑄 ∈ ((𝑀𝐶)𝐼(𝐾‘(𝑀𝐶))))
2418fveq1i 6646 . . . . . . . 8 (𝑁𝐶) = ((𝑆𝐵)‘𝐶)
2517, 24eqtrdi 2849 . . . . . . 7 (𝜑 → (𝐾‘(𝑀𝐶)) = ((𝑆𝐵)‘𝐶))
2625oveq2d 7151 . . . . . 6 (𝜑 → ((𝑀𝐶)𝐼(𝐾‘(𝑀𝐶))) = ((𝑀𝐶)𝐼((𝑆𝐵)‘𝐶)))
2723, 26eleqtrd 2892 . . . . 5 (𝜑𝑄 ∈ ((𝑀𝐶)𝐼((𝑆𝐵)‘𝐶)))
281, 2, 3, 4, 13, 5, 15, 27tgbtwncom 26282 . . . . . . 7 (𝜑𝑄 ∈ (((𝑆𝐵)‘𝐶)𝐼(𝑀𝐶)))
291, 2, 3, 7, 8, 4, 9, 10, 15, 5, 13, 28mirbtwni 26465 . . . . . 6 (𝜑 → (𝑀𝑄) ∈ ((𝑀‘((𝑆𝐵)‘𝐶))𝐼(𝑀‘(𝑀𝐶))))
301, 2, 3, 7, 8, 4, 9, 10, 12mirmir 26456 . . . . . . 7 (𝜑 → (𝑀‘(𝑀𝐶)) = 𝐶)
3130oveq2d 7151 . . . . . 6 (𝜑 → ((𝑀‘((𝑆𝐵)‘𝐶))𝐼(𝑀‘(𝑀𝐶))) = ((𝑀‘((𝑆𝐵)‘𝐶))𝐼𝐶))
3229, 31eleqtrd 2892 . . . . 5 (𝜑 → (𝑀𝑄) ∈ ((𝑀‘((𝑆𝐵)‘𝐶))𝐼𝐶))
331, 2, 3, 4, 13, 15axtgcgrrflx 26256 . . . . . 6 (𝜑 → ((𝑀𝐶) ((𝑆𝐵)‘𝐶)) = (((𝑆𝐵)‘𝐶) (𝑀𝐶)))
341, 2, 3, 7, 8, 4, 9, 10, 15, 13miriso 26464 . . . . . 6 (𝜑 → ((𝑀‘((𝑆𝐵)‘𝐶)) (𝑀‘(𝑀𝐶))) = (((𝑆𝐵)‘𝐶) (𝑀𝐶)))
3530oveq2d 7151 . . . . . 6 (𝜑 → ((𝑀‘((𝑆𝐵)‘𝐶)) (𝑀‘(𝑀𝐶))) = ((𝑀‘((𝑆𝐵)‘𝐶)) 𝐶))
3633, 34, 353eqtr2d 2839 . . . . 5 (𝜑 → ((𝑀𝐶) ((𝑆𝐵)‘𝐶)) = ((𝑀‘((𝑆𝐵)‘𝐶)) 𝐶))
3725oveq2d 7151 . . . . . . 7 (𝜑 → (𝑄 (𝐾‘(𝑀𝐶))) = (𝑄 ((𝑆𝐵)‘𝐶)))
381, 2, 3, 7, 8, 4, 5, 21, 13mircgr 26451 . . . . . . 7 (𝜑 → (𝑄 (𝐾‘(𝑀𝐶))) = (𝑄 (𝑀𝐶)))
3937, 38eqtr3d 2835 . . . . . 6 (𝜑 → (𝑄 ((𝑆𝐵)‘𝐶)) = (𝑄 (𝑀𝐶)))
401, 2, 3, 7, 8, 4, 9, 10, 5, 13miriso 26464 . . . . . 6 (𝜑 → ((𝑀𝑄) (𝑀‘(𝑀𝐶))) = (𝑄 (𝑀𝐶)))
4130oveq2d 7151 . . . . . 6 (𝜑 → ((𝑀𝑄) (𝑀‘(𝑀𝐶))) = ((𝑀𝑄) 𝐶))
4239, 40, 413eqtr2d 2839 . . . . 5 (𝜑 → (𝑄 ((𝑆𝐵)‘𝐶)) = ((𝑀𝑄) 𝐶))
431, 2, 3, 7, 8, 4, 9, 10, 6mirmir 26456 . . . . . . . . . 10 (𝜑 → (𝑀‘(𝑀𝐵)) = 𝐵)
44 eqidd 2799 . . . . . . . . . 10 (𝜑 → (𝑀𝐵) = (𝑀𝐵))
45 eqidd 2799 . . . . . . . . . 10 (𝜑 → (𝑀𝐶) = (𝑀𝐶))
4643, 44, 45s3eqd 14217 . . . . . . . . 9 (𝜑 → ⟨“(𝑀‘(𝑀𝐵))(𝑀𝐵)(𝑀𝐶)”⟩ = ⟨“𝐵(𝑀𝐵)(𝑀𝐶)”⟩)
471, 2, 3, 7, 8, 4, 9, 10, 6mircl 26455 . . . . . . . . . 10 (𝜑 → (𝑀𝐵) ∈ 𝑃)
48 simpr 488 . . . . . . . . . . . . . . 15 ((𝜑𝐴 = 𝐵) → 𝐴 = 𝐵)
4948fveq2d 6649 . . . . . . . . . . . . . 14 ((𝜑𝐴 = 𝐵) → (𝑀𝐴) = (𝑀𝐵))
504adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝐴 = 𝐵) → 𝐺 ∈ TarskiG)
519adantr 484 . . . . . . . . . . . . . . 15 ((𝜑𝐴 = 𝐵) → 𝐴𝑃)
521, 2, 3, 7, 8, 50, 51, 10mircinv 26462 . . . . . . . . . . . . . 14 ((𝜑𝐴 = 𝐵) → (𝑀𝐴) = 𝐴)
5349, 52eqtr3d 2835 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐵) → (𝑀𝐵) = 𝐴)
54 eqidd 2799 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐵) → 𝐵 = 𝐵)
55 eqidd 2799 . . . . . . . . . . . . 13 ((𝜑𝐴 = 𝐵) → 𝐶 = 𝐶)
5653, 54, 55s3eqd 14217 . . . . . . . . . . . 12 ((𝜑𝐴 = 𝐵) → ⟨“(𝑀𝐵)𝐵𝐶”⟩ = ⟨“𝐴𝐵𝐶”⟩)
57 colperpexlem.1 . . . . . . . . . . . . 13 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
5857adantr 484 . . . . . . . . . . . 12 ((𝜑𝐴 = 𝐵) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
5956, 58eqeltrd 2890 . . . . . . . . . . 11 ((𝜑𝐴 = 𝐵) → ⟨“(𝑀𝐵)𝐵𝐶”⟩ ∈ (∟G‘𝐺))
604adantr 484 . . . . . . . . . . . 12 ((𝜑𝐴𝐵) → 𝐺 ∈ TarskiG)
619adantr 484 . . . . . . . . . . . 12 ((𝜑𝐴𝐵) → 𝐴𝑃)
626adantr 484 . . . . . . . . . . . 12 ((𝜑𝐴𝐵) → 𝐵𝑃)
6312adantr 484 . . . . . . . . . . . 12 ((𝜑𝐴𝐵) → 𝐶𝑃)
641, 2, 3, 7, 8, 60, 61, 10, 62mircl 26455 . . . . . . . . . . . 12 ((𝜑𝐴𝐵) → (𝑀𝐵) ∈ 𝑃)
6557adantr 484 . . . . . . . . . . . 12 ((𝜑𝐴𝐵) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
66 simpr 488 . . . . . . . . . . . 12 ((𝜑𝐴𝐵) → 𝐴𝐵)
671, 2, 3, 7, 8, 60, 61, 10, 62mirbtwn 26452 . . . . . . . . . . . . . 14 ((𝜑𝐴𝐵) → 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))
681, 7, 3, 60, 64, 62, 61, 67btwncolg1 26349 . . . . . . . . . . . . 13 ((𝜑𝐴𝐵) → (𝐴 ∈ ((𝑀𝐵)𝐿𝐵) ∨ (𝑀𝐵) = 𝐵))
691, 7, 3, 60, 64, 62, 61, 68colcom 26352 . . . . . . . . . . . 12 ((𝜑𝐴𝐵) → (𝐴 ∈ (𝐵𝐿(𝑀𝐵)) ∨ 𝐵 = (𝑀𝐵)))
701, 2, 3, 7, 8, 60, 61, 62, 63, 64, 65, 66, 69ragcol 26493 . . . . . . . . . . 11 ((𝜑𝐴𝐵) → ⟨“(𝑀𝐵)𝐵𝐶”⟩ ∈ (∟G‘𝐺))
7159, 70pm2.61dane 3074 . . . . . . . . . 10 (𝜑 → ⟨“(𝑀𝐵)𝐵𝐶”⟩ ∈ (∟G‘𝐺))
721, 2, 3, 7, 8, 4, 47, 6, 12, 71, 10, 9mirrag 26495 . . . . . . . . 9 (𝜑 → ⟨“(𝑀‘(𝑀𝐵))(𝑀𝐵)(𝑀𝐶)”⟩ ∈ (∟G‘𝐺))
7346, 72eqeltrrd 2891 . . . . . . . 8 (𝜑 → ⟨“𝐵(𝑀𝐵)(𝑀𝐶)”⟩ ∈ (∟G‘𝐺))
741, 2, 3, 7, 8, 4, 6, 47, 13israg 26491 . . . . . . . 8 (𝜑 → (⟨“𝐵(𝑀𝐵)(𝑀𝐶)”⟩ ∈ (∟G‘𝐺) ↔ (𝐵 (𝑀𝐶)) = (𝐵 ((𝑆‘(𝑀𝐵))‘(𝑀𝐶)))))
7573, 74mpbid 235 . . . . . . 7 (𝜑 → (𝐵 (𝑀𝐶)) = (𝐵 ((𝑆‘(𝑀𝐵))‘(𝑀𝐶))))
761, 2, 3, 7, 8, 4, 9, 10, 12, 6mirmir2 26468 . . . . . . . 8 (𝜑 → (𝑀‘((𝑆𝐵)‘𝐶)) = ((𝑆‘(𝑀𝐵))‘(𝑀𝐶)))
7776oveq2d 7151 . . . . . . 7 (𝜑 → (𝐵 (𝑀‘((𝑆𝐵)‘𝐶))) = (𝐵 ((𝑆‘(𝑀𝐵))‘(𝑀𝐶))))
7875, 77eqtr4d 2836 . . . . . 6 (𝜑 → (𝐵 (𝑀𝐶)) = (𝐵 (𝑀‘((𝑆𝐵)‘𝐶))))
791, 2, 3, 4, 6, 13, 6, 16, 78tgcgrcomlr 26274 . . . . 5 (𝜑 → ((𝑀𝐶) 𝐵) = ((𝑀‘((𝑆𝐵)‘𝐶)) 𝐵))
801, 2, 3, 7, 8, 4, 6, 14, 12mircgr 26451 . . . . . 6 (𝜑 → (𝐵 ((𝑆𝐵)‘𝐶)) = (𝐵 𝐶))
811, 2, 3, 4, 6, 15, 6, 12, 80tgcgrcomlr 26274 . . . . 5 (𝜑 → (((𝑆𝐵)‘𝐶) 𝐵) = (𝐶 𝐵))
821, 2, 3, 4, 13, 5, 15, 6, 16, 11, 12, 6, 27, 32, 36, 42, 79, 81tgifscgr 26302 . . . 4 (𝜑 → (𝑄 𝐵) = ((𝑀𝑄) 𝐵))
831, 2, 3, 4, 5, 6, 11, 6, 82tgcgrcomlr 26274 . . 3 (𝜑 → (𝐵 𝑄) = (𝐵 (𝑀𝑄)))
8410fveq1i 6646 . . . 4 (𝑀𝑄) = ((𝑆𝐴)‘𝑄)
8584oveq2i 7146 . . 3 (𝐵 (𝑀𝑄)) = (𝐵 ((𝑆𝐴)‘𝑄))
8683, 85eqtrdi 2849 . 2 (𝜑 → (𝐵 𝑄) = (𝐵 ((𝑆𝐴)‘𝑄)))
871, 2, 3, 7, 8, 4, 6, 9, 5israg 26491 . 2 (𝜑 → (⟨“𝐵𝐴𝑄”⟩ ∈ (∟G‘𝐺) ↔ (𝐵 𝑄) = (𝐵 ((𝑆𝐴)‘𝑄))))
8886, 87mpbird 260 1 (𝜑 → ⟨“𝐵𝐴𝑄”⟩ ∈ (∟G‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wne 2987  cfv 6324  (class class class)co 7135  ⟨“cs3 14195  Basecbs 16475  distcds 16566  TarskiGcstrkg 26224  Itvcitv 26230  LineGclng 26231  pInvGcmir 26446  ∟Gcrag 26487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-trkgc 26242  df-trkgb 26243  df-trkgcb 26244  df-trkg 26247  df-cgrg 26305  df-mir 26447  df-rag 26488
This theorem is referenced by:  colperpexlem3  26526
  Copyright terms: Public domain W3C validator