MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscgrad Structured version   Visualization version   GIF version

Theorem iscgrad 28735
Description: Sufficient conditions for angle congruence, deduction version. (Contributed by Thierry Arnoux, 1-Aug-2020.)
Hypotheses
Ref Expression
iscgra.p 𝑃 = (Base‘𝐺)
iscgra.i 𝐼 = (Itv‘𝐺)
iscgra.k 𝐾 = (hlG‘𝐺)
iscgra.g (𝜑𝐺 ∈ TarskiG)
iscgra.a (𝜑𝐴𝑃)
iscgra.b (𝜑𝐵𝑃)
iscgra.c (𝜑𝐶𝑃)
iscgra.d (𝜑𝐷𝑃)
iscgra.e (𝜑𝐸𝑃)
iscgra.f (𝜑𝐹𝑃)
iscgrad.x (𝜑𝑋𝑃)
iscgrad.y (𝜑𝑌𝑃)
iscgrad.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑋𝐸𝑌”⟩)
iscgrad.2 (𝜑𝑋(𝐾𝐸)𝐷)
iscgrad.3 (𝜑𝑌(𝐾𝐸)𝐹)
Assertion
Ref Expression
iscgrad (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)

Proof of Theorem iscgrad
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iscgrad.x . . 3 (𝜑𝑋𝑃)
2 iscgrad.y . . 3 (𝜑𝑌𝑃)
3 iscgrad.1 . . 3 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑋𝐸𝑌”⟩)
4 iscgrad.2 . . 3 (𝜑𝑋(𝐾𝐸)𝐷)
5 iscgrad.3 . . 3 (𝜑𝑌(𝐾𝐸)𝐹)
6 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
7 eqidd 2727 . . . . . . 7 (𝑥 = 𝑋𝐸 = 𝐸)
8 eqidd 2727 . . . . . . 7 (𝑥 = 𝑋𝑦 = 𝑦)
96, 7, 8s3eqd 14868 . . . . . 6 (𝑥 = 𝑋 → ⟨“𝑥𝐸𝑦”⟩ = ⟨“𝑋𝐸𝑦”⟩)
109breq2d 5157 . . . . 5 (𝑥 = 𝑋 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑋𝐸𝑦”⟩))
11 breq1 5148 . . . . 5 (𝑥 = 𝑋 → (𝑥(𝐾𝐸)𝐷𝑋(𝐾𝐸)𝐷))
1210, 113anbi12d 1434 . . . 4 (𝑥 = 𝑋 → ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹) ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑋𝐸𝑦”⟩ ∧ 𝑋(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
13 eqidd 2727 . . . . . . 7 (𝑦 = 𝑌𝑋 = 𝑋)
14 eqidd 2727 . . . . . . 7 (𝑦 = 𝑌𝐸 = 𝐸)
15 id 22 . . . . . . 7 (𝑦 = 𝑌𝑦 = 𝑌)
1613, 14, 15s3eqd 14868 . . . . . 6 (𝑦 = 𝑌 → ⟨“𝑋𝐸𝑦”⟩ = ⟨“𝑋𝐸𝑌”⟩)
1716breq2d 5157 . . . . 5 (𝑦 = 𝑌 → (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑋𝐸𝑦”⟩ ↔ ⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑋𝐸𝑌”⟩))
18 breq1 5148 . . . . 5 (𝑦 = 𝑌 → (𝑦(𝐾𝐸)𝐹𝑌(𝐾𝐸)𝐹))
1917, 183anbi13d 1435 . . . 4 (𝑦 = 𝑌 → ((⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑋𝐸𝑦”⟩ ∧ 𝑋(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹) ↔ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑋𝐸𝑌”⟩ ∧ 𝑋(𝐾𝐸)𝐷𝑌(𝐾𝐸)𝐹)))
2012, 19rspc2ev 3620 . . 3 ((𝑋𝑃𝑌𝑃 ∧ (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑋𝐸𝑌”⟩ ∧ 𝑋(𝐾𝐸)𝐷𝑌(𝐾𝐸)𝐹)) → ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))
211, 2, 3, 4, 5, 20syl113anc 1379 . 2 (𝜑 → ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹))
22 iscgra.p . . 3 𝑃 = (Base‘𝐺)
23 iscgra.i . . 3 𝐼 = (Itv‘𝐺)
24 iscgra.k . . 3 𝐾 = (hlG‘𝐺)
25 iscgra.g . . 3 (𝜑𝐺 ∈ TarskiG)
26 iscgra.a . . 3 (𝜑𝐴𝑃)
27 iscgra.b . . 3 (𝜑𝐵𝑃)
28 iscgra.c . . 3 (𝜑𝐶𝑃)
29 iscgra.d . . 3 (𝜑𝐷𝑃)
30 iscgra.e . . 3 (𝜑𝐸𝑃)
31 iscgra.f . . 3 (𝜑𝐹𝑃)
3222, 23, 24, 25, 26, 27, 28, 29, 30, 31iscgra 28733 . 2 (𝜑 → (⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩ ↔ ∃𝑥𝑃𝑦𝑃 (⟨“𝐴𝐵𝐶”⟩(cgrG‘𝐺)⟨“𝑥𝐸𝑦”⟩ ∧ 𝑥(𝐾𝐸)𝐷𝑦(𝐾𝐸)𝐹)))
3321, 32mpbird 256 1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩(cgrA‘𝐺)⟨“𝐷𝐸𝐹”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1084   = wceq 1534  wcel 2099  wrex 3060   class class class wbr 5145  cfv 6546  ⟨“cs3 14846  Basecbs 17208  TarskiGcstrkg 28351  Itvcitv 28357  cgrGccgrg 28434  hlGchlg 28524  cgrAccgra 28731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-resscn 11206  ax-1cn 11207  ax-icn 11208  ax-addcl 11209  ax-addrcl 11210  ax-mulcl 11211  ax-mulrcl 11212  ax-mulcom 11213  ax-addass 11214  ax-mulass 11215  ax-distr 11216  ax-i2m1 11217  ax-1ne0 11218  ax-1rid 11219  ax-rnegex 11220  ax-rrecex 11221  ax-cnre 11222  ax-pre-lttri 11223  ax-pre-lttrn 11224  ax-pre-ltadd 11225  ax-pre-mulgt0 11226
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-1st 7995  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-1o 8488  df-er 8726  df-map 8849  df-en 8967  df-dom 8968  df-sdom 8969  df-fin 8970  df-card 9975  df-pnf 11291  df-mnf 11292  df-xr 11293  df-ltxr 11294  df-le 11295  df-sub 11487  df-neg 11488  df-nn 12259  df-2 12321  df-3 12322  df-n0 12519  df-z 12605  df-uz 12869  df-fz 13533  df-fzo 13676  df-hash 14343  df-word 14518  df-concat 14574  df-s1 14599  df-s2 14852  df-s3 14853  df-cgra 28732
This theorem is referenced by:  cgrahl1  28740  cgrahl2  28741  cgraid  28743  cgrcgra  28745  dfcgra2  28754  sacgr  28755  tgsas2  28780  tgsas3  28781  tgasa1  28782
  Copyright terms: Public domain W3C validator