![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscgrad | Structured version Visualization version GIF version |
Description: Sufficient conditions for angle congruence, deduction version. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
Ref | Expression |
---|---|
iscgra.p | β’ π = (BaseβπΊ) |
iscgra.i | β’ πΌ = (ItvβπΊ) |
iscgra.k | β’ πΎ = (hlGβπΊ) |
iscgra.g | β’ (π β πΊ β TarskiG) |
iscgra.a | β’ (π β π΄ β π) |
iscgra.b | β’ (π β π΅ β π) |
iscgra.c | β’ (π β πΆ β π) |
iscgra.d | β’ (π β π· β π) |
iscgra.e | β’ (π β πΈ β π) |
iscgra.f | β’ (π β πΉ β π) |
iscgrad.x | β’ (π β π β π) |
iscgrad.y | β’ (π β π β π) |
iscgrad.1 | β’ (π β β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βππΈπββ©) |
iscgrad.2 | β’ (π β π(πΎβπΈ)π·) |
iscgrad.3 | β’ (π β π(πΎβπΈ)πΉ) |
Ref | Expression |
---|---|
iscgrad | β’ (π β β¨βπ΄π΅πΆββ©(cgrAβπΊ)β¨βπ·πΈπΉββ©) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscgrad.x | . . 3 β’ (π β π β π) | |
2 | iscgrad.y | . . 3 β’ (π β π β π) | |
3 | iscgrad.1 | . . 3 β’ (π β β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βππΈπββ©) | |
4 | iscgrad.2 | . . 3 β’ (π β π(πΎβπΈ)π·) | |
5 | iscgrad.3 | . . 3 β’ (π β π(πΎβπΈ)πΉ) | |
6 | id 22 | . . . . . . 7 β’ (π₯ = π β π₯ = π) | |
7 | eqidd 2733 | . . . . . . 7 β’ (π₯ = π β πΈ = πΈ) | |
8 | eqidd 2733 | . . . . . . 7 β’ (π₯ = π β π¦ = π¦) | |
9 | 6, 7, 8 | s3eqd 14814 | . . . . . 6 β’ (π₯ = π β β¨βπ₯πΈπ¦ββ© = β¨βππΈπ¦ββ©) |
10 | 9 | breq2d 5160 | . . . . 5 β’ (π₯ = π β (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βππΈπ¦ββ©)) |
11 | breq1 5151 | . . . . 5 β’ (π₯ = π β (π₯(πΎβπΈ)π· β π(πΎβπΈ)π·)) | |
12 | 10, 11 | 3anbi12d 1437 | . . . 4 β’ (π₯ = π β ((β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ) β (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βππΈπ¦ββ© β§ π(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ))) |
13 | eqidd 2733 | . . . . . . 7 β’ (π¦ = π β π = π) | |
14 | eqidd 2733 | . . . . . . 7 β’ (π¦ = π β πΈ = πΈ) | |
15 | id 22 | . . . . . . 7 β’ (π¦ = π β π¦ = π) | |
16 | 13, 14, 15 | s3eqd 14814 | . . . . . 6 β’ (π¦ = π β β¨βππΈπ¦ββ© = β¨βππΈπββ©) |
17 | 16 | breq2d 5160 | . . . . 5 β’ (π¦ = π β (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βππΈπ¦ββ© β β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βππΈπββ©)) |
18 | breq1 5151 | . . . . 5 β’ (π¦ = π β (π¦(πΎβπΈ)πΉ β π(πΎβπΈ)πΉ)) | |
19 | 17, 18 | 3anbi13d 1438 | . . . 4 β’ (π¦ = π β ((β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βππΈπ¦ββ© β§ π(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ) β (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βππΈπββ© β§ π(πΎβπΈ)π· β§ π(πΎβπΈ)πΉ))) |
20 | 12, 19 | rspc2ev 3624 | . . 3 β’ ((π β π β§ π β π β§ (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βππΈπββ© β§ π(πΎβπΈ)π· β§ π(πΎβπΈ)πΉ)) β βπ₯ β π βπ¦ β π (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) |
21 | 1, 2, 3, 4, 5, 20 | syl113anc 1382 | . 2 β’ (π β βπ₯ β π βπ¦ β π (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ)) |
22 | iscgra.p | . . 3 β’ π = (BaseβπΊ) | |
23 | iscgra.i | . . 3 β’ πΌ = (ItvβπΊ) | |
24 | iscgra.k | . . 3 β’ πΎ = (hlGβπΊ) | |
25 | iscgra.g | . . 3 β’ (π β πΊ β TarskiG) | |
26 | iscgra.a | . . 3 β’ (π β π΄ β π) | |
27 | iscgra.b | . . 3 β’ (π β π΅ β π) | |
28 | iscgra.c | . . 3 β’ (π β πΆ β π) | |
29 | iscgra.d | . . 3 β’ (π β π· β π) | |
30 | iscgra.e | . . 3 β’ (π β πΈ β π) | |
31 | iscgra.f | . . 3 β’ (π β πΉ β π) | |
32 | 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 | iscgra 28057 | . 2 β’ (π β (β¨βπ΄π΅πΆββ©(cgrAβπΊ)β¨βπ·πΈπΉββ© β βπ₯ β π βπ¦ β π (β¨βπ΄π΅πΆββ©(cgrGβπΊ)β¨βπ₯πΈπ¦ββ© β§ π₯(πΎβπΈ)π· β§ π¦(πΎβπΈ)πΉ))) |
33 | 21, 32 | mpbird 256 | 1 β’ (π β β¨βπ΄π΅πΆββ©(cgrAβπΊ)β¨βπ·πΈπΉββ©) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 βwrex 3070 class class class wbr 5148 βcfv 6543 β¨βcs3 14792 Basecbs 17143 TarskiGcstrkg 27675 Itvcitv 27681 cgrGccgrg 27758 hlGchlg 27848 cgrAccgra 28055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-fzo 13627 df-hash 14290 df-word 14464 df-concat 14520 df-s1 14545 df-s2 14798 df-s3 14799 df-cgra 28056 |
This theorem is referenced by: cgrahl1 28064 cgrahl2 28065 cgraid 28067 cgrcgra 28069 dfcgra2 28078 sacgr 28079 tgsas2 28104 tgsas3 28105 tgasa1 28106 |
Copyright terms: Public domain | W3C validator |