| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscgrad | Structured version Visualization version GIF version | ||
| Description: Sufficient conditions for angle congruence, deduction version. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
| Ref | Expression |
|---|---|
| iscgra.p | ⊢ 𝑃 = (Base‘𝐺) |
| iscgra.i | ⊢ 𝐼 = (Itv‘𝐺) |
| iscgra.k | ⊢ 𝐾 = (hlG‘𝐺) |
| iscgra.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| iscgra.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| iscgra.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| iscgra.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| iscgra.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| iscgra.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| iscgra.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| iscgrad.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| iscgrad.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| iscgrad.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉) |
| iscgrad.2 | ⊢ (𝜑 → 𝑋(𝐾‘𝐸)𝐷) |
| iscgrad.3 | ⊢ (𝜑 → 𝑌(𝐾‘𝐸)𝐹) |
| Ref | Expression |
|---|---|
| iscgrad | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscgrad.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 2 | iscgrad.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 3 | iscgrad.1 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉) | |
| 4 | iscgrad.2 | . . 3 ⊢ (𝜑 → 𝑋(𝐾‘𝐸)𝐷) | |
| 5 | iscgrad.3 | . . 3 ⊢ (𝜑 → 𝑌(𝐾‘𝐸)𝐹) | |
| 6 | id 22 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
| 7 | eqidd 2730 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝐸 = 𝐸) | |
| 8 | eqidd 2730 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝑦 = 𝑦) | |
| 9 | 6, 7, 8 | s3eqd 14789 | . . . . . 6 ⊢ (𝑥 = 𝑋 → 〈“𝑥𝐸𝑦”〉 = 〈“𝑋𝐸𝑦”〉) |
| 10 | 9 | breq2d 5107 | . . . . 5 ⊢ (𝑥 = 𝑋 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ↔ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑦”〉)) |
| 11 | breq1 5098 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥(𝐾‘𝐸)𝐷 ↔ 𝑋(𝐾‘𝐸)𝐷)) | |
| 12 | 10, 11 | 3anbi12d 1439 | . . . 4 ⊢ (𝑥 = 𝑋 → ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹) ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑦”〉 ∧ 𝑋(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹))) |
| 13 | eqidd 2730 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → 𝑋 = 𝑋) | |
| 14 | eqidd 2730 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → 𝐸 = 𝐸) | |
| 15 | id 22 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → 𝑦 = 𝑌) | |
| 16 | 13, 14, 15 | s3eqd 14789 | . . . . . 6 ⊢ (𝑦 = 𝑌 → 〈“𝑋𝐸𝑦”〉 = 〈“𝑋𝐸𝑌”〉) |
| 17 | 16 | breq2d 5107 | . . . . 5 ⊢ (𝑦 = 𝑌 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑦”〉 ↔ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉)) |
| 18 | breq1 5098 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑦(𝐾‘𝐸)𝐹 ↔ 𝑌(𝐾‘𝐸)𝐹)) | |
| 19 | 17, 18 | 3anbi13d 1440 | . . . 4 ⊢ (𝑦 = 𝑌 → ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑦”〉 ∧ 𝑋(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹) ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉 ∧ 𝑋(𝐾‘𝐸)𝐷 ∧ 𝑌(𝐾‘𝐸)𝐹))) |
| 20 | 12, 19 | rspc2ev 3592 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉 ∧ 𝑋(𝐾‘𝐸)𝐷 ∧ 𝑌(𝐾‘𝐸)𝐹)) → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) |
| 21 | 1, 2, 3, 4, 5, 20 | syl113anc 1384 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) |
| 22 | iscgra.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 23 | iscgra.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 24 | iscgra.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
| 25 | iscgra.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 26 | iscgra.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 27 | iscgra.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 28 | iscgra.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 29 | iscgra.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 30 | iscgra.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
| 31 | iscgra.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
| 32 | 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 | iscgra 28772 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹))) |
| 33 | 21, 32 | mpbird 257 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5095 ‘cfv 6486 〈“cs3 14767 Basecbs 17138 TarskiGcstrkg 28390 Itvcitv 28396 cgrGccgrg 28473 hlGchlg 28563 cgrAccgra 28770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-hash 14256 df-word 14439 df-concat 14496 df-s1 14521 df-s2 14773 df-s3 14774 df-cgra 28771 |
| This theorem is referenced by: cgrahl1 28779 cgrahl2 28780 cgraid 28782 cgrcgra 28784 dfcgra2 28793 sacgr 28794 tgsas2 28819 tgsas3 28820 tgasa1 28821 |
| Copyright terms: Public domain | W3C validator |