![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscgrad | Structured version Visualization version GIF version |
Description: Sufficient conditions for angle congruence, deduction version. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
Ref | Expression |
---|---|
iscgra.p | ⊢ 𝑃 = (Base‘𝐺) |
iscgra.i | ⊢ 𝐼 = (Itv‘𝐺) |
iscgra.k | ⊢ 𝐾 = (hlG‘𝐺) |
iscgra.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
iscgra.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
iscgra.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
iscgra.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
iscgra.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
iscgra.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
iscgra.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
iscgrad.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
iscgrad.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
iscgrad.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉) |
iscgrad.2 | ⊢ (𝜑 → 𝑋(𝐾‘𝐸)𝐷) |
iscgrad.3 | ⊢ (𝜑 → 𝑌(𝐾‘𝐸)𝐹) |
Ref | Expression |
---|---|
iscgrad | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscgrad.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
2 | iscgrad.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
3 | iscgrad.1 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉) | |
4 | iscgrad.2 | . . 3 ⊢ (𝜑 → 𝑋(𝐾‘𝐸)𝐷) | |
5 | iscgrad.3 | . . 3 ⊢ (𝜑 → 𝑌(𝐾‘𝐸)𝐹) | |
6 | id 22 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
7 | eqidd 2741 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝐸 = 𝐸) | |
8 | eqidd 2741 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝑦 = 𝑦) | |
9 | 6, 7, 8 | s3eqd 14913 | . . . . . 6 ⊢ (𝑥 = 𝑋 → 〈“𝑥𝐸𝑦”〉 = 〈“𝑋𝐸𝑦”〉) |
10 | 9 | breq2d 5178 | . . . . 5 ⊢ (𝑥 = 𝑋 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ↔ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑦”〉)) |
11 | breq1 5169 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥(𝐾‘𝐸)𝐷 ↔ 𝑋(𝐾‘𝐸)𝐷)) | |
12 | 10, 11 | 3anbi12d 1437 | . . . 4 ⊢ (𝑥 = 𝑋 → ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹) ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑦”〉 ∧ 𝑋(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹))) |
13 | eqidd 2741 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → 𝑋 = 𝑋) | |
14 | eqidd 2741 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → 𝐸 = 𝐸) | |
15 | id 22 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → 𝑦 = 𝑌) | |
16 | 13, 14, 15 | s3eqd 14913 | . . . . . 6 ⊢ (𝑦 = 𝑌 → 〈“𝑋𝐸𝑦”〉 = 〈“𝑋𝐸𝑌”〉) |
17 | 16 | breq2d 5178 | . . . . 5 ⊢ (𝑦 = 𝑌 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑦”〉 ↔ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉)) |
18 | breq1 5169 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑦(𝐾‘𝐸)𝐹 ↔ 𝑌(𝐾‘𝐸)𝐹)) | |
19 | 17, 18 | 3anbi13d 1438 | . . . 4 ⊢ (𝑦 = 𝑌 → ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑦”〉 ∧ 𝑋(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹) ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉 ∧ 𝑋(𝐾‘𝐸)𝐷 ∧ 𝑌(𝐾‘𝐸)𝐹))) |
20 | 12, 19 | rspc2ev 3648 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉 ∧ 𝑋(𝐾‘𝐸)𝐷 ∧ 𝑌(𝐾‘𝐸)𝐹)) → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) |
21 | 1, 2, 3, 4, 5, 20 | syl113anc 1382 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) |
22 | iscgra.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
23 | iscgra.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
24 | iscgra.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
25 | iscgra.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
26 | iscgra.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
27 | iscgra.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
28 | iscgra.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
29 | iscgra.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
30 | iscgra.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
31 | iscgra.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
32 | 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 | iscgra 28835 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹))) |
33 | 21, 32 | mpbird 257 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 class class class wbr 5166 ‘cfv 6573 〈“cs3 14891 Basecbs 17258 TarskiGcstrkg 28453 Itvcitv 28459 cgrGccgrg 28536 hlGchlg 28626 cgrAccgra 28833 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-s2 14897 df-s3 14898 df-cgra 28834 |
This theorem is referenced by: cgrahl1 28842 cgrahl2 28843 cgraid 28845 cgrcgra 28847 dfcgra2 28856 sacgr 28857 tgsas2 28882 tgsas3 28883 tgasa1 28884 |
Copyright terms: Public domain | W3C validator |