| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscgrad | Structured version Visualization version GIF version | ||
| Description: Sufficient conditions for angle congruence, deduction version. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
| Ref | Expression |
|---|---|
| iscgra.p | ⊢ 𝑃 = (Base‘𝐺) |
| iscgra.i | ⊢ 𝐼 = (Itv‘𝐺) |
| iscgra.k | ⊢ 𝐾 = (hlG‘𝐺) |
| iscgra.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| iscgra.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| iscgra.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| iscgra.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| iscgra.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| iscgra.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| iscgra.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| iscgrad.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| iscgrad.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| iscgrad.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉) |
| iscgrad.2 | ⊢ (𝜑 → 𝑋(𝐾‘𝐸)𝐷) |
| iscgrad.3 | ⊢ (𝜑 → 𝑌(𝐾‘𝐸)𝐹) |
| Ref | Expression |
|---|---|
| iscgrad | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscgrad.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 2 | iscgrad.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 3 | iscgrad.1 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉) | |
| 4 | iscgrad.2 | . . 3 ⊢ (𝜑 → 𝑋(𝐾‘𝐸)𝐷) | |
| 5 | iscgrad.3 | . . 3 ⊢ (𝜑 → 𝑌(𝐾‘𝐸)𝐹) | |
| 6 | id 22 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
| 7 | eqidd 2735 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝐸 = 𝐸) | |
| 8 | eqidd 2735 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝑦 = 𝑦) | |
| 9 | 6, 7, 8 | s3eqd 14872 | . . . . . 6 ⊢ (𝑥 = 𝑋 → 〈“𝑥𝐸𝑦”〉 = 〈“𝑋𝐸𝑦”〉) |
| 10 | 9 | breq2d 5129 | . . . . 5 ⊢ (𝑥 = 𝑋 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ↔ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑦”〉)) |
| 11 | breq1 5120 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥(𝐾‘𝐸)𝐷 ↔ 𝑋(𝐾‘𝐸)𝐷)) | |
| 12 | 10, 11 | 3anbi12d 1438 | . . . 4 ⊢ (𝑥 = 𝑋 → ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹) ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑦”〉 ∧ 𝑋(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹))) |
| 13 | eqidd 2735 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → 𝑋 = 𝑋) | |
| 14 | eqidd 2735 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → 𝐸 = 𝐸) | |
| 15 | id 22 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → 𝑦 = 𝑌) | |
| 16 | 13, 14, 15 | s3eqd 14872 | . . . . . 6 ⊢ (𝑦 = 𝑌 → 〈“𝑋𝐸𝑦”〉 = 〈“𝑋𝐸𝑌”〉) |
| 17 | 16 | breq2d 5129 | . . . . 5 ⊢ (𝑦 = 𝑌 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑦”〉 ↔ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉)) |
| 18 | breq1 5120 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑦(𝐾‘𝐸)𝐹 ↔ 𝑌(𝐾‘𝐸)𝐹)) | |
| 19 | 17, 18 | 3anbi13d 1439 | . . . 4 ⊢ (𝑦 = 𝑌 → ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑦”〉 ∧ 𝑋(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹) ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉 ∧ 𝑋(𝐾‘𝐸)𝐷 ∧ 𝑌(𝐾‘𝐸)𝐹))) |
| 20 | 12, 19 | rspc2ev 3612 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉 ∧ 𝑋(𝐾‘𝐸)𝐷 ∧ 𝑌(𝐾‘𝐸)𝐹)) → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) |
| 21 | 1, 2, 3, 4, 5, 20 | syl113anc 1383 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) |
| 22 | iscgra.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 23 | iscgra.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 24 | iscgra.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
| 25 | iscgra.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 26 | iscgra.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 27 | iscgra.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 28 | iscgra.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 29 | iscgra.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 30 | iscgra.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
| 31 | iscgra.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
| 32 | 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 | iscgra 28722 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹))) |
| 33 | 21, 32 | mpbird 257 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃wrex 3059 class class class wbr 5117 ‘cfv 6528 〈“cs3 14850 Basecbs 17215 TarskiGcstrkg 28340 Itvcitv 28346 cgrGccgrg 28423 hlGchlg 28513 cgrAccgra 28720 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5247 ax-sep 5264 ax-nul 5274 ax-pow 5333 ax-pr 5400 ax-un 7724 ax-cnex 11178 ax-resscn 11179 ax-1cn 11180 ax-icn 11181 ax-addcl 11182 ax-addrcl 11183 ax-mulcl 11184 ax-mulrcl 11185 ax-mulcom 11186 ax-addass 11187 ax-mulass 11188 ax-distr 11189 ax-i2m1 11190 ax-1ne0 11191 ax-1rid 11192 ax-rnegex 11193 ax-rrecex 11194 ax-cnre 11195 ax-pre-lttri 11196 ax-pre-lttrn 11197 ax-pre-ltadd 11198 ax-pre-mulgt0 11199 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-sbc 3764 df-csb 3873 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-pss 3944 df-nul 4307 df-if 4499 df-pw 4575 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-int 4921 df-iun 4967 df-br 5118 df-opab 5180 df-mpt 5200 df-tr 5228 df-id 5546 df-eprel 5551 df-po 5559 df-so 5560 df-fr 5604 df-we 5606 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-rn 5663 df-res 5664 df-ima 5665 df-pred 6288 df-ord 6353 df-on 6354 df-lim 6355 df-suc 6356 df-iota 6481 df-fun 6530 df-fn 6531 df-f 6532 df-f1 6533 df-fo 6534 df-f1o 6535 df-fv 6536 df-riota 7357 df-ov 7403 df-oprab 7404 df-mpo 7405 df-om 7857 df-1st 7983 df-2nd 7984 df-frecs 8275 df-wrecs 8306 df-recs 8380 df-rdg 8419 df-1o 8475 df-er 8714 df-map 8837 df-en 8955 df-dom 8956 df-sdom 8957 df-fin 8958 df-card 9946 df-pnf 11264 df-mnf 11265 df-xr 11266 df-ltxr 11267 df-le 11268 df-sub 11461 df-neg 11462 df-nn 12234 df-2 12296 df-3 12297 df-n0 12495 df-z 12582 df-uz 12846 df-fz 13515 df-fzo 13662 df-hash 14339 df-word 14522 df-concat 14578 df-s1 14603 df-s2 14856 df-s3 14857 df-cgra 28721 |
| This theorem is referenced by: cgrahl1 28729 cgrahl2 28730 cgraid 28732 cgrcgra 28734 dfcgra2 28743 sacgr 28744 tgsas2 28769 tgsas3 28770 tgasa1 28771 |
| Copyright terms: Public domain | W3C validator |