| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscgrad | Structured version Visualization version GIF version | ||
| Description: Sufficient conditions for angle congruence, deduction version. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
| Ref | Expression |
|---|---|
| iscgra.p | ⊢ 𝑃 = (Base‘𝐺) |
| iscgra.i | ⊢ 𝐼 = (Itv‘𝐺) |
| iscgra.k | ⊢ 𝐾 = (hlG‘𝐺) |
| iscgra.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| iscgra.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| iscgra.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| iscgra.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| iscgra.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| iscgra.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| iscgra.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| iscgrad.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| iscgrad.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| iscgrad.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉) |
| iscgrad.2 | ⊢ (𝜑 → 𝑋(𝐾‘𝐸)𝐷) |
| iscgrad.3 | ⊢ (𝜑 → 𝑌(𝐾‘𝐸)𝐹) |
| Ref | Expression |
|---|---|
| iscgrad | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscgrad.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 2 | iscgrad.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 3 | iscgrad.1 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉) | |
| 4 | iscgrad.2 | . . 3 ⊢ (𝜑 → 𝑋(𝐾‘𝐸)𝐷) | |
| 5 | iscgrad.3 | . . 3 ⊢ (𝜑 → 𝑌(𝐾‘𝐸)𝐹) | |
| 6 | id 22 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
| 7 | eqidd 2732 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝐸 = 𝐸) | |
| 8 | eqidd 2732 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝑦 = 𝑦) | |
| 9 | 6, 7, 8 | s3eqd 14771 | . . . . . 6 ⊢ (𝑥 = 𝑋 → 〈“𝑥𝐸𝑦”〉 = 〈“𝑋𝐸𝑦”〉) |
| 10 | 9 | breq2d 5103 | . . . . 5 ⊢ (𝑥 = 𝑋 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ↔ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑦”〉)) |
| 11 | breq1 5094 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥(𝐾‘𝐸)𝐷 ↔ 𝑋(𝐾‘𝐸)𝐷)) | |
| 12 | 10, 11 | 3anbi12d 1439 | . . . 4 ⊢ (𝑥 = 𝑋 → ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹) ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑦”〉 ∧ 𝑋(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹))) |
| 13 | eqidd 2732 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → 𝑋 = 𝑋) | |
| 14 | eqidd 2732 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → 𝐸 = 𝐸) | |
| 15 | id 22 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → 𝑦 = 𝑌) | |
| 16 | 13, 14, 15 | s3eqd 14771 | . . . . . 6 ⊢ (𝑦 = 𝑌 → 〈“𝑋𝐸𝑦”〉 = 〈“𝑋𝐸𝑌”〉) |
| 17 | 16 | breq2d 5103 | . . . . 5 ⊢ (𝑦 = 𝑌 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑦”〉 ↔ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉)) |
| 18 | breq1 5094 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑦(𝐾‘𝐸)𝐹 ↔ 𝑌(𝐾‘𝐸)𝐹)) | |
| 19 | 17, 18 | 3anbi13d 1440 | . . . 4 ⊢ (𝑦 = 𝑌 → ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑦”〉 ∧ 𝑋(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹) ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉 ∧ 𝑋(𝐾‘𝐸)𝐷 ∧ 𝑌(𝐾‘𝐸)𝐹))) |
| 20 | 12, 19 | rspc2ev 3590 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉 ∧ 𝑋(𝐾‘𝐸)𝐷 ∧ 𝑌(𝐾‘𝐸)𝐹)) → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) |
| 21 | 1, 2, 3, 4, 5, 20 | syl113anc 1384 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) |
| 22 | iscgra.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 23 | iscgra.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 24 | iscgra.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
| 25 | iscgra.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 26 | iscgra.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 27 | iscgra.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 28 | iscgra.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 29 | iscgra.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 30 | iscgra.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
| 31 | iscgra.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
| 32 | 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 | iscgra 28788 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹))) |
| 33 | 21, 32 | mpbird 257 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5091 ‘cfv 6481 〈“cs3 14749 Basecbs 17120 TarskiGcstrkg 28406 Itvcitv 28412 cgrGccgrg 28489 hlGchlg 28579 cgrAccgra 28786 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-concat 14478 df-s1 14504 df-s2 14755 df-s3 14756 df-cgra 28787 |
| This theorem is referenced by: cgrahl1 28795 cgrahl2 28796 cgraid 28798 cgrcgra 28800 dfcgra2 28809 sacgr 28810 tgsas2 28835 tgsas3 28836 tgasa1 28837 |
| Copyright terms: Public domain | W3C validator |