| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscgrad | Structured version Visualization version GIF version | ||
| Description: Sufficient conditions for angle congruence, deduction version. (Contributed by Thierry Arnoux, 1-Aug-2020.) |
| Ref | Expression |
|---|---|
| iscgra.p | ⊢ 𝑃 = (Base‘𝐺) |
| iscgra.i | ⊢ 𝐼 = (Itv‘𝐺) |
| iscgra.k | ⊢ 𝐾 = (hlG‘𝐺) |
| iscgra.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
| iscgra.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
| iscgra.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
| iscgra.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
| iscgra.d | ⊢ (𝜑 → 𝐷 ∈ 𝑃) |
| iscgra.e | ⊢ (𝜑 → 𝐸 ∈ 𝑃) |
| iscgra.f | ⊢ (𝜑 → 𝐹 ∈ 𝑃) |
| iscgrad.x | ⊢ (𝜑 → 𝑋 ∈ 𝑃) |
| iscgrad.y | ⊢ (𝜑 → 𝑌 ∈ 𝑃) |
| iscgrad.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉) |
| iscgrad.2 | ⊢ (𝜑 → 𝑋(𝐾‘𝐸)𝐷) |
| iscgrad.3 | ⊢ (𝜑 → 𝑌(𝐾‘𝐸)𝐹) |
| Ref | Expression |
|---|---|
| iscgrad | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscgrad.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑃) | |
| 2 | iscgrad.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑃) | |
| 3 | iscgrad.1 | . . 3 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉) | |
| 4 | iscgrad.2 | . . 3 ⊢ (𝜑 → 𝑋(𝐾‘𝐸)𝐷) | |
| 5 | iscgrad.3 | . . 3 ⊢ (𝜑 → 𝑌(𝐾‘𝐸)𝐹) | |
| 6 | id 22 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
| 7 | eqidd 2731 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝐸 = 𝐸) | |
| 8 | eqidd 2731 | . . . . . . 7 ⊢ (𝑥 = 𝑋 → 𝑦 = 𝑦) | |
| 9 | 6, 7, 8 | s3eqd 14837 | . . . . . 6 ⊢ (𝑥 = 𝑋 → 〈“𝑥𝐸𝑦”〉 = 〈“𝑋𝐸𝑦”〉) |
| 10 | 9 | breq2d 5122 | . . . . 5 ⊢ (𝑥 = 𝑋 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ↔ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑦”〉)) |
| 11 | breq1 5113 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥(𝐾‘𝐸)𝐷 ↔ 𝑋(𝐾‘𝐸)𝐷)) | |
| 12 | 10, 11 | 3anbi12d 1439 | . . . 4 ⊢ (𝑥 = 𝑋 → ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹) ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑦”〉 ∧ 𝑋(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹))) |
| 13 | eqidd 2731 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → 𝑋 = 𝑋) | |
| 14 | eqidd 2731 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → 𝐸 = 𝐸) | |
| 15 | id 22 | . . . . . . 7 ⊢ (𝑦 = 𝑌 → 𝑦 = 𝑌) | |
| 16 | 13, 14, 15 | s3eqd 14837 | . . . . . 6 ⊢ (𝑦 = 𝑌 → 〈“𝑋𝐸𝑦”〉 = 〈“𝑋𝐸𝑌”〉) |
| 17 | 16 | breq2d 5122 | . . . . 5 ⊢ (𝑦 = 𝑌 → (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑦”〉 ↔ 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉)) |
| 18 | breq1 5113 | . . . . 5 ⊢ (𝑦 = 𝑌 → (𝑦(𝐾‘𝐸)𝐹 ↔ 𝑌(𝐾‘𝐸)𝐹)) | |
| 19 | 17, 18 | 3anbi13d 1440 | . . . 4 ⊢ (𝑦 = 𝑌 → ((〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑦”〉 ∧ 𝑋(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹) ↔ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉 ∧ 𝑋(𝐾‘𝐸)𝐷 ∧ 𝑌(𝐾‘𝐸)𝐹))) |
| 20 | 12, 19 | rspc2ev 3604 | . . 3 ⊢ ((𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑋𝐸𝑌”〉 ∧ 𝑋(𝐾‘𝐸)𝐷 ∧ 𝑌(𝐾‘𝐸)𝐹)) → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) |
| 21 | 1, 2, 3, 4, 5, 20 | syl113anc 1384 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹)) |
| 22 | iscgra.p | . . 3 ⊢ 𝑃 = (Base‘𝐺) | |
| 23 | iscgra.i | . . 3 ⊢ 𝐼 = (Itv‘𝐺) | |
| 24 | iscgra.k | . . 3 ⊢ 𝐾 = (hlG‘𝐺) | |
| 25 | iscgra.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
| 26 | iscgra.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
| 27 | iscgra.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
| 28 | iscgra.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
| 29 | iscgra.d | . . 3 ⊢ (𝜑 → 𝐷 ∈ 𝑃) | |
| 30 | iscgra.e | . . 3 ⊢ (𝜑 → 𝐸 ∈ 𝑃) | |
| 31 | iscgra.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝑃) | |
| 32 | 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 | iscgra 28743 | . 2 ⊢ (𝜑 → (〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉 ↔ ∃𝑥 ∈ 𝑃 ∃𝑦 ∈ 𝑃 (〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“𝑥𝐸𝑦”〉 ∧ 𝑥(𝐾‘𝐸)𝐷 ∧ 𝑦(𝐾‘𝐸)𝐹))) |
| 33 | 21, 32 | mpbird 257 | 1 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrA‘𝐺)〈“𝐷𝐸𝐹”〉) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 class class class wbr 5110 ‘cfv 6514 〈“cs3 14815 Basecbs 17186 TarskiGcstrkg 28361 Itvcitv 28367 cgrGccgrg 28444 hlGchlg 28534 cgrAccgra 28741 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-fz 13476 df-fzo 13623 df-hash 14303 df-word 14486 df-concat 14543 df-s1 14568 df-s2 14821 df-s3 14822 df-cgra 28742 |
| This theorem is referenced by: cgrahl1 28750 cgrahl2 28751 cgraid 28753 cgrcgra 28755 dfcgra2 28764 sacgr 28765 tgsas2 28790 tgsas3 28791 tgasa1 28792 |
| Copyright terms: Public domain | W3C validator |