MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hypcgrlem2 Structured version   Visualization version   GIF version

Theorem hypcgrlem2 27065
Description: Lemma for hypcgr 27066, case where triangles share one vertex 𝐵. (Contributed by Thierry Arnoux, 16-Dec-2019.)
Hypotheses
Ref Expression
hypcgr.p 𝑃 = (Base‘𝐺)
hypcgr.m = (dist‘𝐺)
hypcgr.i 𝐼 = (Itv‘𝐺)
hypcgr.g (𝜑𝐺 ∈ TarskiG)
hypcgr.h (𝜑𝐺DimTarskiG≥2)
hypcgr.a (𝜑𝐴𝑃)
hypcgr.b (𝜑𝐵𝑃)
hypcgr.c (𝜑𝐶𝑃)
hypcgr.d (𝜑𝐷𝑃)
hypcgr.e (𝜑𝐸𝑃)
hypcgr.f (𝜑𝐹𝑃)
hypcgr.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
hypcgr.2 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
hypcgr.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
hypcgr.4 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
hypcgrlem2.b (𝜑𝐵 = 𝐸)
hypcgrlem2.s 𝑆 = ((lInvG‘𝐺)‘((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))
Assertion
Ref Expression
hypcgrlem2 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))

Proof of Theorem hypcgrlem2
StepHypRef Expression
1 hypcgr.p . . . 4 𝑃 = (Base‘𝐺)
2 hypcgr.m . . . 4 = (dist‘𝐺)
3 hypcgr.i . . . 4 𝐼 = (Itv‘𝐺)
4 hypcgr.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 480 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐺 ∈ TarskiG)
6 hypcgr.h . . . . 5 (𝜑𝐺DimTarskiG≥2)
76adantr 480 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐺DimTarskiG≥2)
8 hypcgr.a . . . . 5 (𝜑𝐴𝑃)
98adantr 480 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐴𝑃)
10 hypcgr.b . . . . 5 (𝜑𝐵𝑃)
1110adantr 480 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐵𝑃)
12 hypcgr.c . . . . 5 (𝜑𝐶𝑃)
1312adantr 480 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐶𝑃)
14 eqid 2738 . . . . 5 (LineG‘𝐺) = (LineG‘𝐺)
15 eqid 2738 . . . . 5 (pInvG‘𝐺) = (pInvG‘𝐺)
16 eqid 2738 . . . . 5 ((pInvG‘𝐺)‘𝐵) = ((pInvG‘𝐺)‘𝐵)
17 hypcgr.d . . . . . 6 (𝜑𝐷𝑃)
1817adantr 480 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐷𝑃)
191, 2, 3, 14, 15, 5, 11, 16, 18mircl 26926 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (((pInvG‘𝐺)‘𝐵)‘𝐷) ∈ 𝑃)
20 hypcgr.e . . . . 5 (𝜑𝐸𝑃)
2120adantr 480 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐸𝑃)
22 hypcgr.1 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
2322adantr 480 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
24 eqidd 2739 . . . . . 6 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (((pInvG‘𝐺)‘𝐵)‘𝐷) = (((pInvG‘𝐺)‘𝐵)‘𝐷))
25 hypcgrlem2.b . . . . . . . . 9 (𝜑𝐵 = 𝐸)
2625adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐵 = 𝐸)
271, 2, 3, 14, 15, 5, 11, 16, 21mirinv 26931 . . . . . . . 8 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ((((pInvG‘𝐺)‘𝐵)‘𝐸) = 𝐸𝐵 = 𝐸))
2826, 27mpbird 256 . . . . . . 7 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (((pInvG‘𝐺)‘𝐵)‘𝐸) = 𝐸)
2928eqcomd 2744 . . . . . 6 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐸 = (((pInvG‘𝐺)‘𝐵)‘𝐸))
30 hypcgr.f . . . . . . . . . 10 (𝜑𝐹𝑃)
3130adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐹𝑃)
321, 2, 3, 5, 7, 13, 31midcom 27047 . . . . . . . 8 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐶(midG‘𝐺)𝐹) = (𝐹(midG‘𝐺)𝐶))
33 simpr 484 . . . . . . . 8 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐶(midG‘𝐺)𝐹) = 𝐵)
3432, 33eqtr3d 2780 . . . . . . 7 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐹(midG‘𝐺)𝐶) = 𝐵)
351, 2, 3, 5, 7, 31, 13, 15, 11ismidb 27043 . . . . . . 7 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐶 = (((pInvG‘𝐺)‘𝐵)‘𝐹) ↔ (𝐹(midG‘𝐺)𝐶) = 𝐵))
3634, 35mpbird 256 . . . . . 6 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐶 = (((pInvG‘𝐺)‘𝐵)‘𝐹))
3724, 29, 36s3eqd 14505 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ⟨“(((pInvG‘𝐺)‘𝐵)‘𝐷)𝐸𝐶”⟩ = ⟨“(((pInvG‘𝐺)‘𝐵)‘𝐷)(((pInvG‘𝐺)‘𝐵)‘𝐸)(((pInvG‘𝐺)‘𝐵)‘𝐹)”⟩)
38 hypcgr.2 . . . . . . 7 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
3938adantr 480 . . . . . 6 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
401, 2, 3, 14, 15, 5, 18, 21, 31, 39, 16, 11mirrag 26966 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ⟨“(((pInvG‘𝐺)‘𝐵)‘𝐷)(((pInvG‘𝐺)‘𝐵)‘𝐸)(((pInvG‘𝐺)‘𝐵)‘𝐹)”⟩ ∈ (∟G‘𝐺))
4137, 40eqeltrd 2839 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ⟨“(((pInvG‘𝐺)‘𝐵)‘𝐷)𝐸𝐶”⟩ ∈ (∟G‘𝐺))
42 hypcgr.3 . . . . . 6 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
4342adantr 480 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐴 𝐵) = (𝐷 𝐸))
441, 2, 3, 14, 15, 5, 11, 16, 18, 21miriso 26935 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ((((pInvG‘𝐺)‘𝐵)‘𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐸)) = (𝐷 𝐸))
4528oveq2d 7271 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ((((pInvG‘𝐺)‘𝐵)‘𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐸)) = ((((pInvG‘𝐺)‘𝐵)‘𝐷) 𝐸))
4643, 44, 453eqtr2d 2784 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐴 𝐵) = ((((pInvG‘𝐺)‘𝐵)‘𝐷) 𝐸))
4726oveq1d 7270 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐵 𝐶) = (𝐸 𝐶))
48 eqid 2738 . . . 4 ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)(((pInvG‘𝐺)‘𝐵)‘𝐷))(LineG‘𝐺)𝐵)) = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)(((pInvG‘𝐺)‘𝐵)‘𝐷))(LineG‘𝐺)𝐵))
49 eqidd 2739 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐶 = 𝐶)
501, 2, 3, 5, 7, 9, 11, 13, 19, 21, 13, 23, 41, 46, 47, 26, 48, 49hypcgrlem1 27064 . . 3 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐴 𝐶) = ((((pInvG‘𝐺)‘𝐵)‘𝐷) 𝐶))
5136oveq2d 7271 . . 3 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ((((pInvG‘𝐺)‘𝐵)‘𝐷) 𝐶) = ((((pInvG‘𝐺)‘𝐵)‘𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐹)))
521, 2, 3, 14, 15, 5, 11, 16, 18, 31miriso 26935 . . 3 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ((((pInvG‘𝐺)‘𝐵)‘𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐹)) = (𝐷 𝐹))
5350, 51, 523eqtrd 2782 . 2 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
544ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐺 ∈ TarskiG)
556ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐺DimTarskiG≥2)
568ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐴𝑃)
5710ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐵𝑃)
5812ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐶𝑃)
5917ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐷𝑃)
6020ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐸𝑃)
6130ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐹𝑃)
6222ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
6338ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
6442ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → (𝐴 𝐵) = (𝐷 𝐸))
65 hypcgr.4 . . . . 5 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
6665ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → (𝐵 𝐶) = (𝐸 𝐹))
6725ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐵 = 𝐸)
68 eqid 2738 . . . 4 ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)) = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
69 simpr 484 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐶 = 𝐹)
701, 2, 3, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69hypcgrlem1 27064 . . 3 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → (𝐴 𝐶) = (𝐷 𝐹))
714ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐺 ∈ TarskiG)
726ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐺DimTarskiG≥2)
738ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐴𝑃)
7410ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐵𝑃)
7512ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐶𝑃)
76 hypcgrlem2.s . . . . . 6 𝑆 = ((lInvG‘𝐺)‘((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))
7730ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐹𝑃)
781, 2, 3, 71, 72, 75, 77midcl 27042 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ 𝑃)
79 simplr 765 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ≠ 𝐵)
801, 3, 14, 71, 78, 74, 79tgelrnln 26895 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵) ∈ ran (LineG‘𝐺))
8117ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐷𝑃)
821, 2, 3, 71, 72, 76, 14, 80, 81lmicl 27051 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝑆𝐷) ∈ 𝑃)
8320ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐸𝑃)
841, 2, 3, 71, 72, 76, 14, 80, 83lmicl 27051 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝑆𝐸) ∈ 𝑃)
851, 2, 3, 71, 72, 76, 14, 80, 77lmicl 27051 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝑆𝐹) ∈ 𝑃)
8622ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
871, 2, 3, 71, 72, 76, 14, 80lmimot 27063 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝑆 ∈ (𝐺Ismt𝐺))
8838ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
891, 2, 3, 14, 15, 71, 81, 83, 77, 87, 88motrag 26973 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ⟨“(𝑆𝐷)(𝑆𝐸)(𝑆𝐹)”⟩ ∈ (∟G‘𝐺))
9042ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐴 𝐵) = (𝐷 𝐸))
911, 2, 3, 71, 72, 76, 14, 80, 81, 83lmiiso 27062 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝑆𝐷) (𝑆𝐸)) = (𝐷 𝐸))
9290, 91eqtr4d 2781 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐴 𝐵) = ((𝑆𝐷) (𝑆𝐸)))
9365ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐵 𝐶) = (𝐸 𝐹))
941, 2, 3, 71, 72, 76, 14, 80, 83, 77lmiiso 27062 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝑆𝐸) (𝑆𝐹)) = (𝐸 𝐹))
9593, 94eqtr4d 2781 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐵 𝐶) = ((𝑆𝐸) (𝑆𝐹)))
961, 3, 14, 71, 78, 74, 79tglinerflx2 26899 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐵 ∈ ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))
971, 2, 3, 71, 72, 76, 14, 80, 74, 96lmicinv 27058 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝑆𝐵) = 𝐵)
9825ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐵 = 𝐸)
9998fveq2d 6760 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝑆𝐵) = (𝑆𝐸))
10097, 99eqtr3d 2780 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐵 = (𝑆𝐸))
101 eqid 2738 . . . . 5 ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)(𝑆𝐷))(LineG‘𝐺)𝐵)) = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)(𝑆𝐷))(LineG‘𝐺)𝐵))
1021, 2, 3, 71, 72, 75, 77midcom 27047 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) = (𝐹(midG‘𝐺)𝐶))
1031, 3, 14, 71, 78, 74, 79tglinerflx1 26898 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))
104102, 103eqeltrrd 2840 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐹(midG‘𝐺)𝐶) ∈ ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))
105 simpr 484 . . . . . . . . . 10 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐶𝐹)
106105necomd 2998 . . . . . . . . 9 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐹𝐶)
1071, 3, 14, 71, 77, 75, 106tgelrnln 26895 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐹(LineG‘𝐺)𝐶) ∈ ran (LineG‘𝐺))
1081, 2, 3, 71, 72, 75, 77midbtwn 27044 . . . . . . . . . . 11 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ (𝐶𝐼𝐹))
1091, 2, 3, 71, 75, 78, 77, 108tgbtwncom 26753 . . . . . . . . . 10 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ (𝐹𝐼𝐶))
1101, 3, 14, 71, 77, 75, 78, 106, 109btwnlng1 26884 . . . . . . . . 9 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ (𝐹(LineG‘𝐺)𝐶))
111103, 110elind 4124 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ (((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵) ∩ (𝐹(LineG‘𝐺)𝐶)))
1121, 3, 14, 71, 77, 75, 106tglinerflx2 26899 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐶 ∈ (𝐹(LineG‘𝐺)𝐶))
11379necomd 2998 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐵 ≠ (𝐶(midG‘𝐺)𝐹))
1144ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐺 ∈ TarskiG)
11512ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐶𝑃)
11630ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐹𝑃)
1176ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐺DimTarskiG≥2)
118 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐶 = (𝐶(midG‘𝐺)𝐹))
119118eqcomd 2744 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → (𝐶(midG‘𝐺)𝐹) = 𝐶)
1201, 2, 3, 114, 117, 115, 116, 119midcgr 27045 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → (𝐶 𝐶) = (𝐶 𝐹))
121120eqcomd 2744 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → (𝐶 𝐹) = (𝐶 𝐶))
1221, 2, 3, 114, 115, 116, 115, 121axtgcgrid 26728 . . . . . . . . . . 11 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐶 = 𝐹)
123122ex 412 . . . . . . . . . 10 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) → (𝐶 = (𝐶(midG‘𝐺)𝐹) → 𝐶 = 𝐹))
124123necon3d 2963 . . . . . . . . 9 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) → (𝐶𝐹𝐶 ≠ (𝐶(midG‘𝐺)𝐹)))
125124imp 406 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐶 ≠ (𝐶(midG‘𝐺)𝐹))
12698eqcomd 2744 . . . . . . . . . . 11 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐸 = 𝐵)
127 eqidd 2739 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) = (𝐶(midG‘𝐺)𝐹))
1281, 2, 3, 71, 72, 75, 77, 15, 78ismidb 27043 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐹 = (((pInvG‘𝐺)‘(𝐶(midG‘𝐺)𝐹))‘𝐶) ↔ (𝐶(midG‘𝐺)𝐹) = (𝐶(midG‘𝐺)𝐹)))
129127, 128mpbird 256 . . . . . . . . . . 11 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐹 = (((pInvG‘𝐺)‘(𝐶(midG‘𝐺)𝐹))‘𝐶))
130126, 129oveq12d 7273 . . . . . . . . . 10 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐸 𝐹) = (𝐵 (((pInvG‘𝐺)‘(𝐶(midG‘𝐺)𝐹))‘𝐶)))
13193, 130eqtrd 2778 . . . . . . . . 9 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐵 𝐶) = (𝐵 (((pInvG‘𝐺)‘(𝐶(midG‘𝐺)𝐹))‘𝐶)))
1321, 2, 3, 14, 15, 71, 74, 78, 75israg 26962 . . . . . . . . 9 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (⟨“𝐵(𝐶(midG‘𝐺)𝐹)𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐵 𝐶) = (𝐵 (((pInvG‘𝐺)‘(𝐶(midG‘𝐺)𝐹))‘𝐶))))
133131, 132mpbird 256 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ⟨“𝐵(𝐶(midG‘𝐺)𝐹)𝐶”⟩ ∈ (∟G‘𝐺))
1341, 2, 3, 14, 71, 80, 107, 111, 96, 112, 113, 125, 133ragperp 26982 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐹(LineG‘𝐺)𝐶))
135134orcd 869 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐹(LineG‘𝐺)𝐶) ∨ 𝐹 = 𝐶))
1361, 2, 3, 71, 72, 76, 14, 80, 77, 75islmib 27052 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶 = (𝑆𝐹) ↔ ((𝐹(midG‘𝐺)𝐶) ∈ ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵) ∧ (((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐹(LineG‘𝐺)𝐶) ∨ 𝐹 = 𝐶))))
137104, 135, 136mpbir2and 709 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐶 = (𝑆𝐹))
1381, 2, 3, 71, 72, 73, 74, 75, 82, 84, 85, 86, 89, 92, 95, 100, 101, 137hypcgrlem1 27064 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐴 𝐶) = ((𝑆𝐷) (𝑆𝐹)))
1391, 2, 3, 71, 72, 76, 14, 80, 81, 77lmiiso 27062 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝑆𝐷) (𝑆𝐹)) = (𝐷 𝐹))
140138, 139eqtrd 2778 . . 3 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐴 𝐶) = (𝐷 𝐹))
14170, 140pm2.61dane 3031 . 2 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
14253, 141pm2.61dane 3031 1 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  cfv 6418  (class class class)co 7255  2c2 11958  ⟨“cs3 14483  Basecbs 16840  distcds 16897  TarskiGcstrkg 26693  DimTarskiGcstrkgld 26697  Itvcitv 26699  LineGclng 26700  pInvGcmir 26917  ∟Gcrag 26958  ⟂Gcperpg 26960  midGcmid 27037  lInvGclmi 27038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-trkgc 26713  df-trkgb 26714  df-trkgcb 26715  df-trkgld 26717  df-trkg 26718  df-cgrg 26776  df-ismt 26798  df-leg 26848  df-mir 26918  df-rag 26959  df-perpg 26961  df-mid 27039  df-lmi 27040
This theorem is referenced by:  hypcgr  27066
  Copyright terms: Public domain W3C validator