MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hypcgrlem2 Structured version   Visualization version   GIF version

Theorem hypcgrlem2 26594
Description: Lemma for hypcgr 26595, case where triangles share one vertex 𝐵. (Contributed by Thierry Arnoux, 16-Dec-2019.)
Hypotheses
Ref Expression
hypcgr.p 𝑃 = (Base‘𝐺)
hypcgr.m = (dist‘𝐺)
hypcgr.i 𝐼 = (Itv‘𝐺)
hypcgr.g (𝜑𝐺 ∈ TarskiG)
hypcgr.h (𝜑𝐺DimTarskiG≥2)
hypcgr.a (𝜑𝐴𝑃)
hypcgr.b (𝜑𝐵𝑃)
hypcgr.c (𝜑𝐶𝑃)
hypcgr.d (𝜑𝐷𝑃)
hypcgr.e (𝜑𝐸𝑃)
hypcgr.f (𝜑𝐹𝑃)
hypcgr.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
hypcgr.2 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
hypcgr.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
hypcgr.4 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
hypcgrlem2.b (𝜑𝐵 = 𝐸)
hypcgrlem2.s 𝑆 = ((lInvG‘𝐺)‘((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))
Assertion
Ref Expression
hypcgrlem2 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))

Proof of Theorem hypcgrlem2
StepHypRef Expression
1 hypcgr.p . . . 4 𝑃 = (Base‘𝐺)
2 hypcgr.m . . . 4 = (dist‘𝐺)
3 hypcgr.i . . . 4 𝐼 = (Itv‘𝐺)
4 hypcgr.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 484 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐺 ∈ TarskiG)
6 hypcgr.h . . . . 5 (𝜑𝐺DimTarskiG≥2)
76adantr 484 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐺DimTarskiG≥2)
8 hypcgr.a . . . . 5 (𝜑𝐴𝑃)
98adantr 484 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐴𝑃)
10 hypcgr.b . . . . 5 (𝜑𝐵𝑃)
1110adantr 484 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐵𝑃)
12 hypcgr.c . . . . 5 (𝜑𝐶𝑃)
1312adantr 484 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐶𝑃)
14 eqid 2798 . . . . 5 (LineG‘𝐺) = (LineG‘𝐺)
15 eqid 2798 . . . . 5 (pInvG‘𝐺) = (pInvG‘𝐺)
16 eqid 2798 . . . . 5 ((pInvG‘𝐺)‘𝐵) = ((pInvG‘𝐺)‘𝐵)
17 hypcgr.d . . . . . 6 (𝜑𝐷𝑃)
1817adantr 484 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐷𝑃)
191, 2, 3, 14, 15, 5, 11, 16, 18mircl 26455 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (((pInvG‘𝐺)‘𝐵)‘𝐷) ∈ 𝑃)
20 hypcgr.e . . . . 5 (𝜑𝐸𝑃)
2120adantr 484 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐸𝑃)
22 hypcgr.1 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
2322adantr 484 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
24 eqidd 2799 . . . . . 6 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (((pInvG‘𝐺)‘𝐵)‘𝐷) = (((pInvG‘𝐺)‘𝐵)‘𝐷))
25 hypcgrlem2.b . . . . . . . . 9 (𝜑𝐵 = 𝐸)
2625adantr 484 . . . . . . . 8 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐵 = 𝐸)
271, 2, 3, 14, 15, 5, 11, 16, 21mirinv 26460 . . . . . . . 8 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ((((pInvG‘𝐺)‘𝐵)‘𝐸) = 𝐸𝐵 = 𝐸))
2826, 27mpbird 260 . . . . . . 7 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (((pInvG‘𝐺)‘𝐵)‘𝐸) = 𝐸)
2928eqcomd 2804 . . . . . 6 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐸 = (((pInvG‘𝐺)‘𝐵)‘𝐸))
30 hypcgr.f . . . . . . . . . 10 (𝜑𝐹𝑃)
3130adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐹𝑃)
321, 2, 3, 5, 7, 13, 31midcom 26576 . . . . . . . 8 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐶(midG‘𝐺)𝐹) = (𝐹(midG‘𝐺)𝐶))
33 simpr 488 . . . . . . . 8 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐶(midG‘𝐺)𝐹) = 𝐵)
3432, 33eqtr3d 2835 . . . . . . 7 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐹(midG‘𝐺)𝐶) = 𝐵)
351, 2, 3, 5, 7, 31, 13, 15, 11ismidb 26572 . . . . . . 7 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐶 = (((pInvG‘𝐺)‘𝐵)‘𝐹) ↔ (𝐹(midG‘𝐺)𝐶) = 𝐵))
3634, 35mpbird 260 . . . . . 6 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐶 = (((pInvG‘𝐺)‘𝐵)‘𝐹))
3724, 29, 36s3eqd 14217 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ⟨“(((pInvG‘𝐺)‘𝐵)‘𝐷)𝐸𝐶”⟩ = ⟨“(((pInvG‘𝐺)‘𝐵)‘𝐷)(((pInvG‘𝐺)‘𝐵)‘𝐸)(((pInvG‘𝐺)‘𝐵)‘𝐹)”⟩)
38 hypcgr.2 . . . . . . 7 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
3938adantr 484 . . . . . 6 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
401, 2, 3, 14, 15, 5, 18, 21, 31, 39, 16, 11mirrag 26495 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ⟨“(((pInvG‘𝐺)‘𝐵)‘𝐷)(((pInvG‘𝐺)‘𝐵)‘𝐸)(((pInvG‘𝐺)‘𝐵)‘𝐹)”⟩ ∈ (∟G‘𝐺))
4137, 40eqeltrd 2890 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ⟨“(((pInvG‘𝐺)‘𝐵)‘𝐷)𝐸𝐶”⟩ ∈ (∟G‘𝐺))
42 hypcgr.3 . . . . . 6 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
4342adantr 484 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐴 𝐵) = (𝐷 𝐸))
441, 2, 3, 14, 15, 5, 11, 16, 18, 21miriso 26464 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ((((pInvG‘𝐺)‘𝐵)‘𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐸)) = (𝐷 𝐸))
4528oveq2d 7151 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ((((pInvG‘𝐺)‘𝐵)‘𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐸)) = ((((pInvG‘𝐺)‘𝐵)‘𝐷) 𝐸))
4643, 44, 453eqtr2d 2839 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐴 𝐵) = ((((pInvG‘𝐺)‘𝐵)‘𝐷) 𝐸))
4726oveq1d 7150 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐵 𝐶) = (𝐸 𝐶))
48 eqid 2798 . . . 4 ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)(((pInvG‘𝐺)‘𝐵)‘𝐷))(LineG‘𝐺)𝐵)) = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)(((pInvG‘𝐺)‘𝐵)‘𝐷))(LineG‘𝐺)𝐵))
49 eqidd 2799 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐶 = 𝐶)
501, 2, 3, 5, 7, 9, 11, 13, 19, 21, 13, 23, 41, 46, 47, 26, 48, 49hypcgrlem1 26593 . . 3 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐴 𝐶) = ((((pInvG‘𝐺)‘𝐵)‘𝐷) 𝐶))
5136oveq2d 7151 . . 3 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ((((pInvG‘𝐺)‘𝐵)‘𝐷) 𝐶) = ((((pInvG‘𝐺)‘𝐵)‘𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐹)))
521, 2, 3, 14, 15, 5, 11, 16, 18, 31miriso 26464 . . 3 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ((((pInvG‘𝐺)‘𝐵)‘𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐹)) = (𝐷 𝐹))
5350, 51, 523eqtrd 2837 . 2 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
544ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐺 ∈ TarskiG)
556ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐺DimTarskiG≥2)
568ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐴𝑃)
5710ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐵𝑃)
5812ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐶𝑃)
5917ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐷𝑃)
6020ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐸𝑃)
6130ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐹𝑃)
6222ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
6338ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
6442ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → (𝐴 𝐵) = (𝐷 𝐸))
65 hypcgr.4 . . . . 5 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
6665ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → (𝐵 𝐶) = (𝐸 𝐹))
6725ad2antrr 725 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐵 = 𝐸)
68 eqid 2798 . . . 4 ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)) = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
69 simpr 488 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐶 = 𝐹)
701, 2, 3, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69hypcgrlem1 26593 . . 3 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → (𝐴 𝐶) = (𝐷 𝐹))
714ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐺 ∈ TarskiG)
726ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐺DimTarskiG≥2)
738ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐴𝑃)
7410ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐵𝑃)
7512ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐶𝑃)
76 hypcgrlem2.s . . . . . 6 𝑆 = ((lInvG‘𝐺)‘((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))
7730ad2antrr 725 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐹𝑃)
781, 2, 3, 71, 72, 75, 77midcl 26571 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ 𝑃)
79 simplr 768 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ≠ 𝐵)
801, 3, 14, 71, 78, 74, 79tgelrnln 26424 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵) ∈ ran (LineG‘𝐺))
8117ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐷𝑃)
821, 2, 3, 71, 72, 76, 14, 80, 81lmicl 26580 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝑆𝐷) ∈ 𝑃)
8320ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐸𝑃)
841, 2, 3, 71, 72, 76, 14, 80, 83lmicl 26580 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝑆𝐸) ∈ 𝑃)
851, 2, 3, 71, 72, 76, 14, 80, 77lmicl 26580 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝑆𝐹) ∈ 𝑃)
8622ad2antrr 725 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
871, 2, 3, 71, 72, 76, 14, 80lmimot 26592 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝑆 ∈ (𝐺Ismt𝐺))
8838ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
891, 2, 3, 14, 15, 71, 81, 83, 77, 87, 88motrag 26502 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ⟨“(𝑆𝐷)(𝑆𝐸)(𝑆𝐹)”⟩ ∈ (∟G‘𝐺))
9042ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐴 𝐵) = (𝐷 𝐸))
911, 2, 3, 71, 72, 76, 14, 80, 81, 83lmiiso 26591 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝑆𝐷) (𝑆𝐸)) = (𝐷 𝐸))
9290, 91eqtr4d 2836 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐴 𝐵) = ((𝑆𝐷) (𝑆𝐸)))
9365ad2antrr 725 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐵 𝐶) = (𝐸 𝐹))
941, 2, 3, 71, 72, 76, 14, 80, 83, 77lmiiso 26591 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝑆𝐸) (𝑆𝐹)) = (𝐸 𝐹))
9593, 94eqtr4d 2836 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐵 𝐶) = ((𝑆𝐸) (𝑆𝐹)))
961, 3, 14, 71, 78, 74, 79tglinerflx2 26428 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐵 ∈ ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))
971, 2, 3, 71, 72, 76, 14, 80, 74, 96lmicinv 26587 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝑆𝐵) = 𝐵)
9825ad2antrr 725 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐵 = 𝐸)
9998fveq2d 6649 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝑆𝐵) = (𝑆𝐸))
10097, 99eqtr3d 2835 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐵 = (𝑆𝐸))
101 eqid 2798 . . . . 5 ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)(𝑆𝐷))(LineG‘𝐺)𝐵)) = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)(𝑆𝐷))(LineG‘𝐺)𝐵))
1021, 2, 3, 71, 72, 75, 77midcom 26576 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) = (𝐹(midG‘𝐺)𝐶))
1031, 3, 14, 71, 78, 74, 79tglinerflx1 26427 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))
104102, 103eqeltrrd 2891 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐹(midG‘𝐺)𝐶) ∈ ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))
105 simpr 488 . . . . . . . . . 10 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐶𝐹)
106105necomd 3042 . . . . . . . . 9 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐹𝐶)
1071, 3, 14, 71, 77, 75, 106tgelrnln 26424 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐹(LineG‘𝐺)𝐶) ∈ ran (LineG‘𝐺))
1081, 2, 3, 71, 72, 75, 77midbtwn 26573 . . . . . . . . . . 11 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ (𝐶𝐼𝐹))
1091, 2, 3, 71, 75, 78, 77, 108tgbtwncom 26282 . . . . . . . . . 10 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ (𝐹𝐼𝐶))
1101, 3, 14, 71, 77, 75, 78, 106, 109btwnlng1 26413 . . . . . . . . 9 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ (𝐹(LineG‘𝐺)𝐶))
111103, 110elind 4121 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ (((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵) ∩ (𝐹(LineG‘𝐺)𝐶)))
1121, 3, 14, 71, 77, 75, 106tglinerflx2 26428 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐶 ∈ (𝐹(LineG‘𝐺)𝐶))
11379necomd 3042 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐵 ≠ (𝐶(midG‘𝐺)𝐹))
1144ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐺 ∈ TarskiG)
11512ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐶𝑃)
11630ad2antrr 725 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐹𝑃)
1176ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐺DimTarskiG≥2)
118 simpr 488 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐶 = (𝐶(midG‘𝐺)𝐹))
119118eqcomd 2804 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → (𝐶(midG‘𝐺)𝐹) = 𝐶)
1201, 2, 3, 114, 117, 115, 116, 119midcgr 26574 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → (𝐶 𝐶) = (𝐶 𝐹))
121120eqcomd 2804 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → (𝐶 𝐹) = (𝐶 𝐶))
1221, 2, 3, 114, 115, 116, 115, 121axtgcgrid 26257 . . . . . . . . . . 11 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐶 = 𝐹)
123122ex 416 . . . . . . . . . 10 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) → (𝐶 = (𝐶(midG‘𝐺)𝐹) → 𝐶 = 𝐹))
124123necon3d 3008 . . . . . . . . 9 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) → (𝐶𝐹𝐶 ≠ (𝐶(midG‘𝐺)𝐹)))
125124imp 410 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐶 ≠ (𝐶(midG‘𝐺)𝐹))
12698eqcomd 2804 . . . . . . . . . . 11 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐸 = 𝐵)
127 eqidd 2799 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) = (𝐶(midG‘𝐺)𝐹))
1281, 2, 3, 71, 72, 75, 77, 15, 78ismidb 26572 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐹 = (((pInvG‘𝐺)‘(𝐶(midG‘𝐺)𝐹))‘𝐶) ↔ (𝐶(midG‘𝐺)𝐹) = (𝐶(midG‘𝐺)𝐹)))
129127, 128mpbird 260 . . . . . . . . . . 11 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐹 = (((pInvG‘𝐺)‘(𝐶(midG‘𝐺)𝐹))‘𝐶))
130126, 129oveq12d 7153 . . . . . . . . . 10 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐸 𝐹) = (𝐵 (((pInvG‘𝐺)‘(𝐶(midG‘𝐺)𝐹))‘𝐶)))
13193, 130eqtrd 2833 . . . . . . . . 9 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐵 𝐶) = (𝐵 (((pInvG‘𝐺)‘(𝐶(midG‘𝐺)𝐹))‘𝐶)))
1321, 2, 3, 14, 15, 71, 74, 78, 75israg 26491 . . . . . . . . 9 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (⟨“𝐵(𝐶(midG‘𝐺)𝐹)𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐵 𝐶) = (𝐵 (((pInvG‘𝐺)‘(𝐶(midG‘𝐺)𝐹))‘𝐶))))
133131, 132mpbird 260 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ⟨“𝐵(𝐶(midG‘𝐺)𝐹)𝐶”⟩ ∈ (∟G‘𝐺))
1341, 2, 3, 14, 71, 80, 107, 111, 96, 112, 113, 125, 133ragperp 26511 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐹(LineG‘𝐺)𝐶))
135134orcd 870 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐹(LineG‘𝐺)𝐶) ∨ 𝐹 = 𝐶))
1361, 2, 3, 71, 72, 76, 14, 80, 77, 75islmib 26581 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶 = (𝑆𝐹) ↔ ((𝐹(midG‘𝐺)𝐶) ∈ ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵) ∧ (((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐹(LineG‘𝐺)𝐶) ∨ 𝐹 = 𝐶))))
137104, 135, 136mpbir2and 712 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐶 = (𝑆𝐹))
1381, 2, 3, 71, 72, 73, 74, 75, 82, 84, 85, 86, 89, 92, 95, 100, 101, 137hypcgrlem1 26593 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐴 𝐶) = ((𝑆𝐷) (𝑆𝐹)))
1391, 2, 3, 71, 72, 76, 14, 80, 81, 77lmiiso 26591 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝑆𝐷) (𝑆𝐹)) = (𝐷 𝐹))
140138, 139eqtrd 2833 . . 3 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐴 𝐶) = (𝐷 𝐹))
14170, 140pm2.61dane 3074 . 2 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
14253, 141pm2.61dane 3074 1 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 844   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  2c2 11680  ⟨“cs3 14195  Basecbs 16475  distcds 16566  TarskiGcstrkg 26224  DimTarskiGcstrkgld 26228  Itvcitv 26230  LineGclng 26231  pInvGcmir 26446  ∟Gcrag 26487  ⟂Gcperpg 26489  midGcmid 26566  lInvGclmi 26567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-pm 8392  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-fzo 13029  df-hash 13687  df-word 13858  df-concat 13914  df-s1 13941  df-s2 14201  df-s3 14202  df-trkgc 26242  df-trkgb 26243  df-trkgcb 26244  df-trkgld 26246  df-trkg 26247  df-cgrg 26305  df-ismt 26327  df-leg 26377  df-mir 26447  df-rag 26488  df-perpg 26490  df-mid 26568  df-lmi 26569
This theorem is referenced by:  hypcgr  26595
  Copyright terms: Public domain W3C validator