MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hypcgrlem2 Structured version   Visualization version   GIF version

Theorem hypcgrlem2 26513
Description: Lemma for hypcgr 26514, case where triangles share one vertex 𝐵. (Contributed by Thierry Arnoux, 16-Dec-2019.)
Hypotheses
Ref Expression
hypcgr.p 𝑃 = (Base‘𝐺)
hypcgr.m = (dist‘𝐺)
hypcgr.i 𝐼 = (Itv‘𝐺)
hypcgr.g (𝜑𝐺 ∈ TarskiG)
hypcgr.h (𝜑𝐺DimTarskiG≥2)
hypcgr.a (𝜑𝐴𝑃)
hypcgr.b (𝜑𝐵𝑃)
hypcgr.c (𝜑𝐶𝑃)
hypcgr.d (𝜑𝐷𝑃)
hypcgr.e (𝜑𝐸𝑃)
hypcgr.f (𝜑𝐹𝑃)
hypcgr.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
hypcgr.2 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
hypcgr.3 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
hypcgr.4 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
hypcgrlem2.b (𝜑𝐵 = 𝐸)
hypcgrlem2.s 𝑆 = ((lInvG‘𝐺)‘((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))
Assertion
Ref Expression
hypcgrlem2 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))

Proof of Theorem hypcgrlem2
StepHypRef Expression
1 hypcgr.p . . . 4 𝑃 = (Base‘𝐺)
2 hypcgr.m . . . 4 = (dist‘𝐺)
3 hypcgr.i . . . 4 𝐼 = (Itv‘𝐺)
4 hypcgr.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
54adantr 481 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐺 ∈ TarskiG)
6 hypcgr.h . . . . 5 (𝜑𝐺DimTarskiG≥2)
76adantr 481 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐺DimTarskiG≥2)
8 hypcgr.a . . . . 5 (𝜑𝐴𝑃)
98adantr 481 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐴𝑃)
10 hypcgr.b . . . . 5 (𝜑𝐵𝑃)
1110adantr 481 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐵𝑃)
12 hypcgr.c . . . . 5 (𝜑𝐶𝑃)
1312adantr 481 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐶𝑃)
14 eqid 2818 . . . . 5 (LineG‘𝐺) = (LineG‘𝐺)
15 eqid 2818 . . . . 5 (pInvG‘𝐺) = (pInvG‘𝐺)
16 eqid 2818 . . . . 5 ((pInvG‘𝐺)‘𝐵) = ((pInvG‘𝐺)‘𝐵)
17 hypcgr.d . . . . . 6 (𝜑𝐷𝑃)
1817adantr 481 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐷𝑃)
191, 2, 3, 14, 15, 5, 11, 16, 18mircl 26374 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (((pInvG‘𝐺)‘𝐵)‘𝐷) ∈ 𝑃)
20 hypcgr.e . . . . 5 (𝜑𝐸𝑃)
2120adantr 481 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐸𝑃)
22 hypcgr.1 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
2322adantr 481 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
24 eqidd 2819 . . . . . 6 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (((pInvG‘𝐺)‘𝐵)‘𝐷) = (((pInvG‘𝐺)‘𝐵)‘𝐷))
25 hypcgrlem2.b . . . . . . . . 9 (𝜑𝐵 = 𝐸)
2625adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐵 = 𝐸)
271, 2, 3, 14, 15, 5, 11, 16, 21mirinv 26379 . . . . . . . 8 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ((((pInvG‘𝐺)‘𝐵)‘𝐸) = 𝐸𝐵 = 𝐸))
2826, 27mpbird 258 . . . . . . 7 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (((pInvG‘𝐺)‘𝐵)‘𝐸) = 𝐸)
2928eqcomd 2824 . . . . . 6 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐸 = (((pInvG‘𝐺)‘𝐵)‘𝐸))
30 hypcgr.f . . . . . . . . . 10 (𝜑𝐹𝑃)
3130adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐹𝑃)
321, 2, 3, 5, 7, 13, 31midcom 26495 . . . . . . . 8 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐶(midG‘𝐺)𝐹) = (𝐹(midG‘𝐺)𝐶))
33 simpr 485 . . . . . . . 8 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐶(midG‘𝐺)𝐹) = 𝐵)
3432, 33eqtr3d 2855 . . . . . . 7 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐹(midG‘𝐺)𝐶) = 𝐵)
351, 2, 3, 5, 7, 31, 13, 15, 11ismidb 26491 . . . . . . 7 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐶 = (((pInvG‘𝐺)‘𝐵)‘𝐹) ↔ (𝐹(midG‘𝐺)𝐶) = 𝐵))
3634, 35mpbird 258 . . . . . 6 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐶 = (((pInvG‘𝐺)‘𝐵)‘𝐹))
3724, 29, 36s3eqd 14214 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ⟨“(((pInvG‘𝐺)‘𝐵)‘𝐷)𝐸𝐶”⟩ = ⟨“(((pInvG‘𝐺)‘𝐵)‘𝐷)(((pInvG‘𝐺)‘𝐵)‘𝐸)(((pInvG‘𝐺)‘𝐵)‘𝐹)”⟩)
38 hypcgr.2 . . . . . . 7 (𝜑 → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
3938adantr 481 . . . . . 6 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
401, 2, 3, 14, 15, 5, 18, 21, 31, 39, 16, 11mirrag 26414 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ⟨“(((pInvG‘𝐺)‘𝐵)‘𝐷)(((pInvG‘𝐺)‘𝐵)‘𝐸)(((pInvG‘𝐺)‘𝐵)‘𝐹)”⟩ ∈ (∟G‘𝐺))
4137, 40eqeltrd 2910 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ⟨“(((pInvG‘𝐺)‘𝐵)‘𝐷)𝐸𝐶”⟩ ∈ (∟G‘𝐺))
42 hypcgr.3 . . . . . 6 (𝜑 → (𝐴 𝐵) = (𝐷 𝐸))
4342adantr 481 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐴 𝐵) = (𝐷 𝐸))
441, 2, 3, 14, 15, 5, 11, 16, 18, 21miriso 26383 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ((((pInvG‘𝐺)‘𝐵)‘𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐸)) = (𝐷 𝐸))
4528oveq2d 7161 . . . . 5 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ((((pInvG‘𝐺)‘𝐵)‘𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐸)) = ((((pInvG‘𝐺)‘𝐵)‘𝐷) 𝐸))
4643, 44, 453eqtr2d 2859 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐴 𝐵) = ((((pInvG‘𝐺)‘𝐵)‘𝐷) 𝐸))
4726oveq1d 7160 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐵 𝐶) = (𝐸 𝐶))
48 eqid 2818 . . . 4 ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)(((pInvG‘𝐺)‘𝐵)‘𝐷))(LineG‘𝐺)𝐵)) = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)(((pInvG‘𝐺)‘𝐵)‘𝐷))(LineG‘𝐺)𝐵))
49 eqidd 2819 . . . 4 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → 𝐶 = 𝐶)
501, 2, 3, 5, 7, 9, 11, 13, 19, 21, 13, 23, 41, 46, 47, 26, 48, 49hypcgrlem1 26512 . . 3 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐴 𝐶) = ((((pInvG‘𝐺)‘𝐵)‘𝐷) 𝐶))
5136oveq2d 7161 . . 3 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ((((pInvG‘𝐺)‘𝐵)‘𝐷) 𝐶) = ((((pInvG‘𝐺)‘𝐵)‘𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐹)))
521, 2, 3, 14, 15, 5, 11, 16, 18, 31miriso 26383 . . 3 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → ((((pInvG‘𝐺)‘𝐵)‘𝐷) (((pInvG‘𝐺)‘𝐵)‘𝐹)) = (𝐷 𝐹))
5350, 51, 523eqtrd 2857 . 2 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) = 𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
544ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐺 ∈ TarskiG)
556ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐺DimTarskiG≥2)
568ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐴𝑃)
5710ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐵𝑃)
5812ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐶𝑃)
5917ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐷𝑃)
6020ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐸𝑃)
6130ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐹𝑃)
6222ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
6338ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
6442ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → (𝐴 𝐵) = (𝐷 𝐸))
65 hypcgr.4 . . . . 5 (𝜑 → (𝐵 𝐶) = (𝐸 𝐹))
6665ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → (𝐵 𝐶) = (𝐸 𝐹))
6725ad2antrr 722 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐵 = 𝐸)
68 eqid 2818 . . . 4 ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵)) = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)𝐷)(LineG‘𝐺)𝐵))
69 simpr 485 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → 𝐶 = 𝐹)
701, 2, 3, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69hypcgrlem1 26512 . . 3 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = 𝐹) → (𝐴 𝐶) = (𝐷 𝐹))
714ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐺 ∈ TarskiG)
726ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐺DimTarskiG≥2)
738ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐴𝑃)
7410ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐵𝑃)
7512ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐶𝑃)
76 hypcgrlem2.s . . . . . 6 𝑆 = ((lInvG‘𝐺)‘((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))
7730ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐹𝑃)
781, 2, 3, 71, 72, 75, 77midcl 26490 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ 𝑃)
79 simplr 765 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ≠ 𝐵)
801, 3, 14, 71, 78, 74, 79tgelrnln 26343 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵) ∈ ran (LineG‘𝐺))
8117ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐷𝑃)
821, 2, 3, 71, 72, 76, 14, 80, 81lmicl 26499 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝑆𝐷) ∈ 𝑃)
8320ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐸𝑃)
841, 2, 3, 71, 72, 76, 14, 80, 83lmicl 26499 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝑆𝐸) ∈ 𝑃)
851, 2, 3, 71, 72, 76, 14, 80, 77lmicl 26499 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝑆𝐹) ∈ 𝑃)
8622ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
871, 2, 3, 71, 72, 76, 14, 80lmimot 26511 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝑆 ∈ (𝐺Ismt𝐺))
8838ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ⟨“𝐷𝐸𝐹”⟩ ∈ (∟G‘𝐺))
891, 2, 3, 14, 15, 71, 81, 83, 77, 87, 88motrag 26421 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ⟨“(𝑆𝐷)(𝑆𝐸)(𝑆𝐹)”⟩ ∈ (∟G‘𝐺))
9042ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐴 𝐵) = (𝐷 𝐸))
911, 2, 3, 71, 72, 76, 14, 80, 81, 83lmiiso 26510 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝑆𝐷) (𝑆𝐸)) = (𝐷 𝐸))
9290, 91eqtr4d 2856 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐴 𝐵) = ((𝑆𝐷) (𝑆𝐸)))
9365ad2antrr 722 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐵 𝐶) = (𝐸 𝐹))
941, 2, 3, 71, 72, 76, 14, 80, 83, 77lmiiso 26510 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝑆𝐸) (𝑆𝐹)) = (𝐸 𝐹))
9593, 94eqtr4d 2856 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐵 𝐶) = ((𝑆𝐸) (𝑆𝐹)))
961, 3, 14, 71, 78, 74, 79tglinerflx2 26347 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐵 ∈ ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))
971, 2, 3, 71, 72, 76, 14, 80, 74, 96lmicinv 26506 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝑆𝐵) = 𝐵)
9825ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐵 = 𝐸)
9998fveq2d 6667 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝑆𝐵) = (𝑆𝐸))
10097, 99eqtr3d 2855 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐵 = (𝑆𝐸))
101 eqid 2818 . . . . 5 ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)(𝑆𝐷))(LineG‘𝐺)𝐵)) = ((lInvG‘𝐺)‘((𝐴(midG‘𝐺)(𝑆𝐷))(LineG‘𝐺)𝐵))
1021, 2, 3, 71, 72, 75, 77midcom 26495 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) = (𝐹(midG‘𝐺)𝐶))
1031, 3, 14, 71, 78, 74, 79tglinerflx1 26346 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))
104102, 103eqeltrrd 2911 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐹(midG‘𝐺)𝐶) ∈ ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵))
105 simpr 485 . . . . . . . . . 10 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐶𝐹)
106105necomd 3068 . . . . . . . . 9 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐹𝐶)
1071, 3, 14, 71, 77, 75, 106tgelrnln 26343 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐹(LineG‘𝐺)𝐶) ∈ ran (LineG‘𝐺))
1081, 2, 3, 71, 72, 75, 77midbtwn 26492 . . . . . . . . . . 11 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ (𝐶𝐼𝐹))
1091, 2, 3, 71, 75, 78, 77, 108tgbtwncom 26201 . . . . . . . . . 10 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ (𝐹𝐼𝐶))
1101, 3, 14, 71, 77, 75, 78, 106, 109btwnlng1 26332 . . . . . . . . 9 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ (𝐹(LineG‘𝐺)𝐶))
111103, 110elind 4168 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) ∈ (((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵) ∩ (𝐹(LineG‘𝐺)𝐶)))
1121, 3, 14, 71, 77, 75, 106tglinerflx2 26347 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐶 ∈ (𝐹(LineG‘𝐺)𝐶))
11379necomd 3068 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐵 ≠ (𝐶(midG‘𝐺)𝐹))
1144ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐺 ∈ TarskiG)
11512ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐶𝑃)
11630ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐹𝑃)
1176ad2antrr 722 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐺DimTarskiG≥2)
118 simpr 485 . . . . . . . . . . . . . . 15 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐶 = (𝐶(midG‘𝐺)𝐹))
119118eqcomd 2824 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → (𝐶(midG‘𝐺)𝐹) = 𝐶)
1201, 2, 3, 114, 117, 115, 116, 119midcgr 26493 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → (𝐶 𝐶) = (𝐶 𝐹))
121120eqcomd 2824 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → (𝐶 𝐹) = (𝐶 𝐶))
1221, 2, 3, 114, 115, 116, 115, 121axtgcgrid 26176 . . . . . . . . . . 11 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶 = (𝐶(midG‘𝐺)𝐹)) → 𝐶 = 𝐹)
123122ex 413 . . . . . . . . . 10 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) → (𝐶 = (𝐶(midG‘𝐺)𝐹) → 𝐶 = 𝐹))
124123necon3d 3034 . . . . . . . . 9 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) → (𝐶𝐹𝐶 ≠ (𝐶(midG‘𝐺)𝐹)))
125124imp 407 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐶 ≠ (𝐶(midG‘𝐺)𝐹))
12698eqcomd 2824 . . . . . . . . . . 11 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐸 = 𝐵)
127 eqidd 2819 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶(midG‘𝐺)𝐹) = (𝐶(midG‘𝐺)𝐹))
1281, 2, 3, 71, 72, 75, 77, 15, 78ismidb 26491 . . . . . . . . . . . 12 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐹 = (((pInvG‘𝐺)‘(𝐶(midG‘𝐺)𝐹))‘𝐶) ↔ (𝐶(midG‘𝐺)𝐹) = (𝐶(midG‘𝐺)𝐹)))
129127, 128mpbird 258 . . . . . . . . . . 11 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐹 = (((pInvG‘𝐺)‘(𝐶(midG‘𝐺)𝐹))‘𝐶))
130126, 129oveq12d 7163 . . . . . . . . . 10 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐸 𝐹) = (𝐵 (((pInvG‘𝐺)‘(𝐶(midG‘𝐺)𝐹))‘𝐶)))
13193, 130eqtrd 2853 . . . . . . . . 9 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐵 𝐶) = (𝐵 (((pInvG‘𝐺)‘(𝐶(midG‘𝐺)𝐹))‘𝐶)))
1321, 2, 3, 14, 15, 71, 74, 78, 75israg 26410 . . . . . . . . 9 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (⟨“𝐵(𝐶(midG‘𝐺)𝐹)𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐵 𝐶) = (𝐵 (((pInvG‘𝐺)‘(𝐶(midG‘𝐺)𝐹))‘𝐶))))
133131, 132mpbird 258 . . . . . . . 8 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ⟨“𝐵(𝐶(midG‘𝐺)𝐹)𝐶”⟩ ∈ (∟G‘𝐺))
1341, 2, 3, 14, 71, 80, 107, 111, 96, 112, 113, 125, 133ragperp 26430 . . . . . . 7 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐹(LineG‘𝐺)𝐶))
135134orcd 869 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐹(LineG‘𝐺)𝐶) ∨ 𝐹 = 𝐶))
1361, 2, 3, 71, 72, 76, 14, 80, 77, 75islmib 26500 . . . . . 6 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐶 = (𝑆𝐹) ↔ ((𝐹(midG‘𝐺)𝐶) ∈ ((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵) ∧ (((𝐶(midG‘𝐺)𝐹)(LineG‘𝐺)𝐵)(⟂G‘𝐺)(𝐹(LineG‘𝐺)𝐶) ∨ 𝐹 = 𝐶))))
137104, 135, 136mpbir2and 709 . . . . 5 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → 𝐶 = (𝑆𝐹))
1381, 2, 3, 71, 72, 73, 74, 75, 82, 84, 85, 86, 89, 92, 95, 100, 101, 137hypcgrlem1 26512 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐴 𝐶) = ((𝑆𝐷) (𝑆𝐹)))
1391, 2, 3, 71, 72, 76, 14, 80, 81, 77lmiiso 26510 . . . 4 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → ((𝑆𝐷) (𝑆𝐹)) = (𝐷 𝐹))
140138, 139eqtrd 2853 . . 3 (((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) ∧ 𝐶𝐹) → (𝐴 𝐶) = (𝐷 𝐹))
14170, 140pm2.61dane 3101 . 2 ((𝜑 ∧ (𝐶(midG‘𝐺)𝐹) ≠ 𝐵) → (𝐴 𝐶) = (𝐷 𝐹))
14253, 141pm2.61dane 3101 1 (𝜑 → (𝐴 𝐶) = (𝐷 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 841   = wceq 1528  wcel 2105  wne 3013   class class class wbr 5057  cfv 6348  (class class class)co 7145  2c2 11680  ⟨“cs3 14192  Basecbs 16471  distcds 16562  TarskiGcstrkg 26143  DimTarskiGcstrkgld 26147  Itvcitv 26149  LineGclng 26150  pInvGcmir 26365  ∟Gcrag 26406  ⟂Gcperpg 26408  midGcmid 26485  lInvGclmi 26486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679  df-word 13850  df-concat 13911  df-s1 13938  df-s2 14198  df-s3 14199  df-trkgc 26161  df-trkgb 26162  df-trkgcb 26163  df-trkgld 26165  df-trkg 26166  df-cgrg 26224  df-ismt 26246  df-leg 26296  df-mir 26366  df-rag 26407  df-perpg 26409  df-mid 26487  df-lmi 26488
This theorem is referenced by:  hypcgr  26514
  Copyright terms: Public domain W3C validator