![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isperp2d | Structured version Visualization version GIF version |
Description: One direction of isperp2 28234. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
Ref | Expression |
---|---|
isperp.p | β’ π = (BaseβπΊ) |
isperp.d | β’ β = (distβπΊ) |
isperp.i | β’ πΌ = (ItvβπΊ) |
isperp.l | β’ πΏ = (LineGβπΊ) |
isperp.g | β’ (π β πΊ β TarskiG) |
isperp.a | β’ (π β π΄ β ran πΏ) |
isperp2.b | β’ (π β π΅ β ran πΏ) |
isperp2.x | β’ (π β π β (π΄ β© π΅)) |
isperp2d.u | β’ (π β π β π΄) |
isperp2d.v | β’ (π β π β π΅) |
isperp2d.p | β’ (π β π΄(βGβπΊ)π΅) |
Ref | Expression |
---|---|
isperp2d | β’ (π β β¨βπππββ© β (βGβπΊ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isperp2d.p | . . 3 β’ (π β π΄(βGβπΊ)π΅) | |
2 | isperp.p | . . . 4 β’ π = (BaseβπΊ) | |
3 | isperp.d | . . . 4 β’ β = (distβπΊ) | |
4 | isperp.i | . . . 4 β’ πΌ = (ItvβπΊ) | |
5 | isperp.l | . . . 4 β’ πΏ = (LineGβπΊ) | |
6 | isperp.g | . . . 4 β’ (π β πΊ β TarskiG) | |
7 | isperp.a | . . . 4 β’ (π β π΄ β ran πΏ) | |
8 | isperp2.b | . . . 4 β’ (π β π΅ β ran πΏ) | |
9 | isperp2.x | . . . 4 β’ (π β π β (π΄ β© π΅)) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | isperp2 28234 | . . 3 β’ (π β (π΄(βGβπΊ)π΅ β βπ’ β π΄ βπ£ β π΅ β¨βπ’ππ£ββ© β (βGβπΊ))) |
11 | 1, 10 | mpbid 231 | . 2 β’ (π β βπ’ β π΄ βπ£ β π΅ β¨βπ’ππ£ββ© β (βGβπΊ)) |
12 | isperp2d.u | . . 3 β’ (π β π β π΄) | |
13 | isperp2d.v | . . 3 β’ (π β π β π΅) | |
14 | id 22 | . . . . . 6 β’ (π’ = π β π’ = π) | |
15 | eqidd 2732 | . . . . . 6 β’ (π’ = π β π = π) | |
16 | eqidd 2732 | . . . . . 6 β’ (π’ = π β π£ = π£) | |
17 | 14, 15, 16 | s3eqd 14820 | . . . . 5 β’ (π’ = π β β¨βπ’ππ£ββ© = β¨βπππ£ββ©) |
18 | 17 | eleq1d 2817 | . . . 4 β’ (π’ = π β (β¨βπ’ππ£ββ© β (βGβπΊ) β β¨βπππ£ββ© β (βGβπΊ))) |
19 | eqidd 2732 | . . . . . 6 β’ (π£ = π β π = π) | |
20 | eqidd 2732 | . . . . . 6 β’ (π£ = π β π = π) | |
21 | id 22 | . . . . . 6 β’ (π£ = π β π£ = π) | |
22 | 19, 20, 21 | s3eqd 14820 | . . . . 5 β’ (π£ = π β β¨βπππ£ββ© = β¨βπππββ©) |
23 | 22 | eleq1d 2817 | . . . 4 β’ (π£ = π β (β¨βπππ£ββ© β (βGβπΊ) β β¨βπππββ© β (βGβπΊ))) |
24 | 18, 23 | rspc2v 3622 | . . 3 β’ ((π β π΄ β§ π β π΅) β (βπ’ β π΄ βπ£ β π΅ β¨βπ’ππ£ββ© β (βGβπΊ) β β¨βπππββ© β (βGβπΊ))) |
25 | 12, 13, 24 | syl2anc 583 | . 2 β’ (π β (βπ’ β π΄ βπ£ β π΅ β¨βπ’ππ£ββ© β (βGβπΊ) β β¨βπππββ© β (βGβπΊ))) |
26 | 11, 25 | mpd 15 | 1 β’ (π β β¨βπππββ© β (βGβπΊ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 βwral 3060 β© cin 3947 class class class wbr 5148 ran crn 5677 βcfv 6543 β¨βcs3 14798 Basecbs 17149 distcds 17211 TarskiGcstrkg 27946 Itvcitv 27952 LineGclng 27953 βGcrag 28212 βGcperpg 28214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-1st 7978 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-oadd 8473 df-er 8706 df-map 8825 df-pm 8826 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-dju 9899 df-card 9937 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-3 12281 df-n0 12478 df-xnn0 12550 df-z 12564 df-uz 12828 df-fz 13490 df-fzo 13633 df-hash 14296 df-word 14470 df-concat 14526 df-s1 14551 df-s2 14804 df-s3 14805 df-trkgc 27967 df-trkgb 27968 df-trkgcb 27969 df-trkg 27972 df-cgrg 28030 df-mir 28172 df-rag 28213 df-perpg 28215 |
This theorem is referenced by: perprag 28245 |
Copyright terms: Public domain | W3C validator |