MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isperp2d Structured version   Visualization version   GIF version

Theorem isperp2d 28739
Description: One direction of isperp2 28738. (Contributed by Thierry Arnoux, 10-Nov-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
isperp2.b (𝜑𝐵 ∈ ran 𝐿)
isperp2.x (𝜑𝑋 ∈ (𝐴𝐵))
isperp2d.u (𝜑𝑈𝐴)
isperp2d.v (𝜑𝑉𝐵)
isperp2d.p (𝜑𝐴(⟂G‘𝐺)𝐵)
Assertion
Ref Expression
isperp2d (𝜑 → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))

Proof of Theorem isperp2d
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp2d.p . . 3 (𝜑𝐴(⟂G‘𝐺)𝐵)
2 isperp.p . . . 4 𝑃 = (Base‘𝐺)
3 isperp.d . . . 4 = (dist‘𝐺)
4 isperp.i . . . 4 𝐼 = (Itv‘𝐺)
5 isperp.l . . . 4 𝐿 = (LineG‘𝐺)
6 isperp.g . . . 4 (𝜑𝐺 ∈ TarskiG)
7 isperp.a . . . 4 (𝜑𝐴 ∈ ran 𝐿)
8 isperp2.b . . . 4 (𝜑𝐵 ∈ ran 𝐿)
9 isperp2.x . . . 4 (𝜑𝑋 ∈ (𝐴𝐵))
102, 3, 4, 5, 6, 7, 8, 9isperp2 28738 . . 3 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺)))
111, 10mpbid 232 . 2 (𝜑 → ∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺))
12 isperp2d.u . . 3 (𝜑𝑈𝐴)
13 isperp2d.v . . 3 (𝜑𝑉𝐵)
14 id 22 . . . . . 6 (𝑢 = 𝑈𝑢 = 𝑈)
15 eqidd 2736 . . . . . 6 (𝑢 = 𝑈𝑋 = 𝑋)
16 eqidd 2736 . . . . . 6 (𝑢 = 𝑈𝑣 = 𝑣)
1714, 15, 16s3eqd 14900 . . . . 5 (𝑢 = 𝑈 → ⟨“𝑢𝑋𝑣”⟩ = ⟨“𝑈𝑋𝑣”⟩)
1817eleq1d 2824 . . . 4 (𝑢 = 𝑈 → (⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝑈𝑋𝑣”⟩ ∈ (∟G‘𝐺)))
19 eqidd 2736 . . . . . 6 (𝑣 = 𝑉𝑈 = 𝑈)
20 eqidd 2736 . . . . . 6 (𝑣 = 𝑉𝑋 = 𝑋)
21 id 22 . . . . . 6 (𝑣 = 𝑉𝑣 = 𝑉)
2219, 20, 21s3eqd 14900 . . . . 5 (𝑣 = 𝑉 → ⟨“𝑈𝑋𝑣”⟩ = ⟨“𝑈𝑋𝑉”⟩)
2322eleq1d 2824 . . . 4 (𝑣 = 𝑉 → (⟨“𝑈𝑋𝑣”⟩ ∈ (∟G‘𝐺) ↔ ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺)))
2418, 23rspc2v 3633 . . 3 ((𝑈𝐴𝑉𝐵) → (∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺) → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺)))
2512, 13, 24syl2anc 584 . 2 (𝜑 → (∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺) → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺)))
2611, 25mpd 15 1 (𝜑 → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2106  wral 3059  cin 3962   class class class wbr 5148  ran crn 5690  cfv 6563  ⟨“cs3 14878  Basecbs 17245  distcds 17307  TarskiGcstrkg 28450  Itvcitv 28456  LineGclng 28457  ∟Gcrag 28716  ⟂Gcperpg 28718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-fzo 13692  df-hash 14367  df-word 14550  df-concat 14606  df-s1 14631  df-s2 14884  df-s3 14885  df-trkgc 28471  df-trkgb 28472  df-trkgcb 28473  df-trkg 28476  df-cgrg 28534  df-mir 28676  df-rag 28717  df-perpg 28719
This theorem is referenced by:  perprag  28749
  Copyright terms: Public domain W3C validator