Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > isperp2d | Structured version Visualization version GIF version |
Description: One direction of isperp2 26806. (Contributed by Thierry Arnoux, 10-Nov-2019.) |
Ref | Expression |
---|---|
isperp.p | ⊢ 𝑃 = (Base‘𝐺) |
isperp.d | ⊢ − = (dist‘𝐺) |
isperp.i | ⊢ 𝐼 = (Itv‘𝐺) |
isperp.l | ⊢ 𝐿 = (LineG‘𝐺) |
isperp.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
isperp.a | ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) |
isperp2.b | ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) |
isperp2.x | ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) |
isperp2d.u | ⊢ (𝜑 → 𝑈 ∈ 𝐴) |
isperp2d.v | ⊢ (𝜑 → 𝑉 ∈ 𝐵) |
isperp2d.p | ⊢ (𝜑 → 𝐴(⟂G‘𝐺)𝐵) |
Ref | Expression |
---|---|
isperp2d | ⊢ (𝜑 → 〈“𝑈𝑋𝑉”〉 ∈ (∟G‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isperp2d.p | . . 3 ⊢ (𝜑 → 𝐴(⟂G‘𝐺)𝐵) | |
2 | isperp.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
3 | isperp.d | . . . 4 ⊢ − = (dist‘𝐺) | |
4 | isperp.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
5 | isperp.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
6 | isperp.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | isperp.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ran 𝐿) | |
8 | isperp2.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ran 𝐿) | |
9 | isperp2.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐴 ∩ 𝐵)) | |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | isperp2 26806 | . . 3 ⊢ (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
11 | 1, 10 | mpbid 235 | . 2 ⊢ (𝜑 → ∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺)) |
12 | isperp2d.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝐴) | |
13 | isperp2d.v | . . 3 ⊢ (𝜑 → 𝑉 ∈ 𝐵) | |
14 | id 22 | . . . . . 6 ⊢ (𝑢 = 𝑈 → 𝑢 = 𝑈) | |
15 | eqidd 2738 | . . . . . 6 ⊢ (𝑢 = 𝑈 → 𝑋 = 𝑋) | |
16 | eqidd 2738 | . . . . . 6 ⊢ (𝑢 = 𝑈 → 𝑣 = 𝑣) | |
17 | 14, 15, 16 | s3eqd 14429 | . . . . 5 ⊢ (𝑢 = 𝑈 → 〈“𝑢𝑋𝑣”〉 = 〈“𝑈𝑋𝑣”〉) |
18 | 17 | eleq1d 2822 | . . . 4 ⊢ (𝑢 = 𝑈 → (〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺) ↔ 〈“𝑈𝑋𝑣”〉 ∈ (∟G‘𝐺))) |
19 | eqidd 2738 | . . . . . 6 ⊢ (𝑣 = 𝑉 → 𝑈 = 𝑈) | |
20 | eqidd 2738 | . . . . . 6 ⊢ (𝑣 = 𝑉 → 𝑋 = 𝑋) | |
21 | id 22 | . . . . . 6 ⊢ (𝑣 = 𝑉 → 𝑣 = 𝑉) | |
22 | 19, 20, 21 | s3eqd 14429 | . . . . 5 ⊢ (𝑣 = 𝑉 → 〈“𝑈𝑋𝑣”〉 = 〈“𝑈𝑋𝑉”〉) |
23 | 22 | eleq1d 2822 | . . . 4 ⊢ (𝑣 = 𝑉 → (〈“𝑈𝑋𝑣”〉 ∈ (∟G‘𝐺) ↔ 〈“𝑈𝑋𝑉”〉 ∈ (∟G‘𝐺))) |
24 | 18, 23 | rspc2v 3547 | . . 3 ⊢ ((𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐵) → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺) → 〈“𝑈𝑋𝑉”〉 ∈ (∟G‘𝐺))) |
25 | 12, 13, 24 | syl2anc 587 | . 2 ⊢ (𝜑 → (∀𝑢 ∈ 𝐴 ∀𝑣 ∈ 𝐵 〈“𝑢𝑋𝑣”〉 ∈ (∟G‘𝐺) → 〈“𝑈𝑋𝑉”〉 ∈ (∟G‘𝐺))) |
26 | 11, 25 | mpd 15 | 1 ⊢ (𝜑 → 〈“𝑈𝑋𝑉”〉 ∈ (∟G‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ∀wral 3061 ∩ cin 3865 class class class wbr 5053 ran crn 5552 ‘cfv 6380 〈“cs3 14407 Basecbs 16760 distcds 16811 TarskiGcstrkg 26521 Itvcitv 26527 LineGclng 26528 ∟Gcrag 26784 ⟂Gcperpg 26786 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-int 4860 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-1st 7761 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-1o 8202 df-oadd 8206 df-er 8391 df-map 8510 df-pm 8511 df-en 8627 df-dom 8628 df-sdom 8629 df-fin 8630 df-dju 9517 df-card 9555 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-xnn0 12163 df-z 12177 df-uz 12439 df-fz 13096 df-fzo 13239 df-hash 13897 df-word 14070 df-concat 14126 df-s1 14153 df-s2 14413 df-s3 14414 df-trkgc 26539 df-trkgb 26540 df-trkgcb 26541 df-trkg 26544 df-cgrg 26602 df-mir 26744 df-rag 26785 df-perpg 26787 |
This theorem is referenced by: perprag 26817 |
Copyright terms: Public domain | W3C validator |