![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdomn2lp | Structured version Visualization version GIF version |
Description: Strict dominance has no 2-cycle loops. (Contributed by NM, 6-May-2008.) |
Ref | Expression |
---|---|
sdomn2lp | ⊢ ¬ (𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomirr 9154 | . 2 ⊢ ¬ 𝐴 ≺ 𝐴 | |
2 | sdomtr 9155 | . 2 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐴) → 𝐴 ≺ 𝐴) | |
3 | 1, 2 | mto 196 | 1 ⊢ ¬ (𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 394 class class class wbr 5155 ≺ csdm 8975 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-br 5156 df-opab 5218 df-id 5582 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-er 8736 df-en 8977 df-dom 8978 df-sdom 8979 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |