Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sdomtr | Structured version Visualization version GIF version |
Description: Strict dominance is transitive. Theorem 21(iii) of [Suppes] p. 97. (Contributed by NM, 9-Jun-1998.) |
Ref | Expression |
---|---|
sdomtr | ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomdom 8583 | . 2 ⊢ (𝐴 ≺ 𝐵 → 𝐴 ≼ 𝐵) | |
2 | domsdomtr 8702 | . 2 ⊢ ((𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) | |
3 | 1, 2 | sylan 583 | 1 ⊢ ((𝐴 ≺ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 class class class wbr 5030 ≼ cdom 8553 ≺ csdm 8554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 |
This theorem is referenced by: sdomn2lp 8706 2pwuninel 8722 2pwne 8723 r1sdom 9276 alephordi 9574 pwsdompw 9704 gruina 10318 rexpen 15673 |
Copyright terms: Public domain | W3C validator |