MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdomtr Structured version   Visualization version   GIF version

Theorem sdomtr 9140
Description: Strict dominance is transitive. Theorem 21(iii) of [Suppes] p. 97. (Contributed by NM, 9-Jun-1998.)
Assertion
Ref Expression
sdomtr ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem sdomtr
StepHypRef Expression
1 sdomdom 9001 . 2 (𝐴𝐵𝐴𝐵)
2 domsdomtr 9137 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
31, 2sylan 579 1 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   class class class wbr 5148  cdom 8962  csdm 8963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-br 5149  df-opab 5211  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967
This theorem is referenced by:  sdomn2lp  9141  2pwuninel  9157  2pwne  9158  r1sdom  9798  alephordi  10098  pwsdompw  10228  gruina  10842  rexpen  16205  sdomne0  42843  sdomne0d  42844
  Copyright terms: Public domain W3C validator