MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enen1 Structured version   Visualization version   GIF version

Theorem enen1 8869
Description: Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003.)
Assertion
Ref Expression
enen1 (𝐴𝐵 → (𝐴𝐶𝐵𝐶))

Proof of Theorem enen1
StepHypRef Expression
1 ensym 8760 . . 3 (𝐴𝐵𝐵𝐴)
2 entr 8763 . . 3 ((𝐵𝐴𝐴𝐶) → 𝐵𝐶)
31, 2sylan 579 . 2 ((𝐴𝐵𝐴𝐶) → 𝐵𝐶)
4 entr 8763 . 2 ((𝐴𝐵𝐵𝐶) → 𝐴𝐶)
53, 4impbida 797 1 (𝐴𝐵 → (𝐴𝐶𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   class class class wbr 5078  cen 8704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-er 8472  df-en 8708
This theorem is referenced by:  enfiALT  8939  onomeneq  8975  alephexp2  10321  pmtrfmvdn0  19051  pibt2  35567
  Copyright terms: Public domain W3C validator