Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > enen1 | Structured version Visualization version GIF version |
Description: Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003.) |
Ref | Expression |
---|---|
enen1 | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≈ 𝐶 ↔ 𝐵 ≈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensym 8760 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
2 | entr 8763 | . . 3 ⊢ ((𝐵 ≈ 𝐴 ∧ 𝐴 ≈ 𝐶) → 𝐵 ≈ 𝐶) | |
3 | 1, 2 | sylan 579 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ≈ 𝐶) → 𝐵 ≈ 𝐶) |
4 | entr 8763 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | |
5 | 3, 4 | impbida 797 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≈ 𝐶 ↔ 𝐵 ≈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 class class class wbr 5078 ≈ cen 8704 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-er 8472 df-en 8708 |
This theorem is referenced by: enfiALT 8939 onomeneq 8975 alephexp2 10321 pmtrfmvdn0 19051 pibt2 35567 |
Copyright terms: Public domain | W3C validator |