| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > enen1 | Structured version Visualization version GIF version | ||
| Description: Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003.) |
| Ref | Expression |
|---|---|
| enen1 | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≈ 𝐶 ↔ 𝐵 ≈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensym 8932 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 2 | entr 8935 | . . 3 ⊢ ((𝐵 ≈ 𝐴 ∧ 𝐴 ≈ 𝐶) → 𝐵 ≈ 𝐶) | |
| 3 | 1, 2 | sylan 580 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ≈ 𝐶) → 𝐵 ≈ 𝐶) |
| 4 | entr 8935 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | |
| 5 | 3, 4 | impbida 800 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≈ 𝐶 ↔ 𝐵 ≈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 class class class wbr 5093 ≈ cen 8872 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-er 8628 df-en 8876 |
| This theorem is referenced by: enfiALT 9104 alephexp2 10479 pmtrfmvdn0 19376 pibt2 37482 |
| Copyright terms: Public domain | W3C validator |