Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > enen1 | Structured version Visualization version GIF version |
Description: Equality-like theorem for equinumerosity. (Contributed by NM, 18-Dec-2003.) |
Ref | Expression |
---|---|
enen1 | ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≈ 𝐶 ↔ 𝐵 ≈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensym 8576 | . . 3 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
2 | entr 8579 | . . 3 ⊢ ((𝐵 ≈ 𝐴 ∧ 𝐴 ≈ 𝐶) → 𝐵 ≈ 𝐶) | |
3 | 1, 2 | sylan 583 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐴 ≈ 𝐶) → 𝐵 ≈ 𝐶) |
4 | entr 8579 | . 2 ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | |
5 | 3, 4 | impbida 800 | 1 ⊢ (𝐴 ≈ 𝐵 → (𝐴 ≈ 𝐶 ↔ 𝐵 ≈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 class class class wbr 5032 ≈ cen 8524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-er 8299 df-en 8528 |
This theorem is referenced by: onomeneq 8747 enfi 8772 alephexp2 10041 pmtrfmvdn0 18657 pibt2 35114 |
Copyright terms: Public domain | W3C validator |