| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdrgsubrg | Structured version Visualization version GIF version | ||
| Description: A sub-division-ring is a subring. (Contributed by SN, 19-Feb-2025.) |
| Ref | Expression |
|---|---|
| sdrgsubrg | ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issdrg 20704 | . 2 ⊢ (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) | |
| 2 | 1 | simp2bi 1146 | 1 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 ↾s cress 17141 SubRingcsubrg 20485 DivRingcdr 20645 SubDRingcsdrg 20702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-sdrg 20703 |
| This theorem is referenced by: sdrgunit 20712 imadrhmcl 20713 subsdrg 33262 sdrgfldext 33661 fldsdrgfldext 33672 fldgenfldext 33679 evls1fldgencl 33681 fldextrspunlsplem 33684 fldextrspunlsp 33685 fldextrspunlem1 33686 fldextrspunfld 33687 fldextrspunlem2 33688 fldextrspundgdvdslem 33691 fldextrspundgdvds 33692 extdgfialglem1 33703 extdgfialglem2 33704 extdgfialg 33705 minplymindeg 33719 minplyann 33720 minplyirredlem 33721 minplyirred 33722 irngnminplynz 33723 minplym1p 33724 minplynzm1p 33725 minplyelirng 33726 irredminply 33727 algextdeglem4 33731 algextdeglem5 33732 algextdeglem6 33733 algextdeglem7 33734 algextdeglem8 33735 rtelextdg2lem 33737 constrelextdg2 33758 |
| Copyright terms: Public domain | W3C validator |