| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdrgsubrg | Structured version Visualization version GIF version | ||
| Description: A sub-division-ring is a subring. (Contributed by SN, 19-Feb-2025.) |
| Ref | Expression |
|---|---|
| sdrgsubrg | ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issdrg 20705 | . 2 ⊢ (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) | |
| 2 | 1 | simp2bi 1146 | 1 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 ↾s cress 17143 SubRingcsubrg 20486 DivRingcdr 20646 SubDRingcsdrg 20703 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 df-sdrg 20704 |
| This theorem is referenced by: sdrgunit 20713 imadrhmcl 20714 subsdrg 33271 sdrgfldext 33684 fldsdrgfldext 33695 fldgenfldext 33702 evls1fldgencl 33704 fldextrspunlsplem 33707 fldextrspunlsp 33708 fldextrspunlem1 33709 fldextrspunfld 33710 fldextrspunlem2 33711 fldextrspundgdvdslem 33714 fldextrspundgdvds 33715 extdgfialglem1 33726 extdgfialglem2 33727 extdgfialg 33728 minplymindeg 33742 minplyann 33743 minplyirredlem 33744 minplyirred 33745 irngnminplynz 33746 minplym1p 33747 minplynzm1p 33748 minplyelirng 33749 irredminply 33750 algextdeglem4 33754 algextdeglem5 33755 algextdeglem6 33756 algextdeglem7 33757 algextdeglem8 33758 rtelextdg2lem 33760 constrelextdg2 33781 |
| Copyright terms: Public domain | W3C validator |