![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdrgsubrg | Structured version Visualization version GIF version |
Description: A sub-division-ring is a subring. (Contributed by SN, 19-Feb-2025.) |
Ref | Expression |
---|---|
sdrgsubrg | ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issdrg 20806 | . 2 ⊢ (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) | |
2 | 1 | simp2bi 1145 | 1 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 ↾s cress 17274 SubRingcsubrg 20586 DivRingcdr 20746 SubDRingcsdrg 20804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-sdrg 20805 |
This theorem is referenced by: sdrgunit 20814 imadrhmcl 20815 fldgenfldext 33693 evls1fldgencl 33695 minplymindeg 33716 minplyann 33717 minplyirredlem 33718 minplyirred 33719 irngnminplynz 33720 minplym1p 33721 irredminply 33722 algextdeglem4 33726 algextdeglem5 33727 algextdeglem6 33728 algextdeglem7 33729 algextdeglem8 33730 rtelextdg2lem 33732 constrelextdg2 33752 |
Copyright terms: Public domain | W3C validator |