MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdrgsubrg Structured version   Visualization version   GIF version

Theorem sdrgsubrg 20707
Description: A sub-division-ring is a subring. (Contributed by SN, 19-Feb-2025.)
Assertion
Ref Expression
sdrgsubrg (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅))

Proof of Theorem sdrgsubrg
StepHypRef Expression
1 issdrg 20704 . 2 (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
21simp2bi 1146 1 (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  cfv 6481  (class class class)co 7346  s cress 17141  SubRingcsubrg 20485  DivRingcdr 20645  SubDRingcsdrg 20702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-sdrg 20703
This theorem is referenced by:  sdrgunit  20712  imadrhmcl  20713  subsdrg  33262  sdrgfldext  33661  fldsdrgfldext  33672  fldgenfldext  33679  evls1fldgencl  33681  fldextrspunlsplem  33684  fldextrspunlsp  33685  fldextrspunlem1  33686  fldextrspunfld  33687  fldextrspunlem2  33688  fldextrspundgdvdslem  33691  fldextrspundgdvds  33692  extdgfialglem1  33703  extdgfialglem2  33704  extdgfialg  33705  minplymindeg  33719  minplyann  33720  minplyirredlem  33721  minplyirred  33722  irngnminplynz  33723  minplym1p  33724  minplynzm1p  33725  minplyelirng  33726  irredminply  33727  algextdeglem4  33731  algextdeglem5  33732  algextdeglem6  33733  algextdeglem7  33734  algextdeglem8  33735  rtelextdg2lem  33737  constrelextdg2  33758
  Copyright terms: Public domain W3C validator