![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdrgsubrg | Structured version Visualization version GIF version |
Description: A sub-division-ring is a subring. (Contributed by SN, 19-Feb-2025.) |
Ref | Expression |
---|---|
sdrgsubrg | ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issdrg 20811 | . 2 ⊢ (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) | |
2 | 1 | simp2bi 1146 | 1 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ↾s cress 17287 SubRingcsubrg 20595 DivRingcdr 20751 SubDRingcsdrg 20809 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-sdrg 20810 |
This theorem is referenced by: sdrgunit 20819 imadrhmcl 20820 fldgenfldext 33678 evls1fldgencl 33680 minplymindeg 33701 minplyann 33702 minplyirredlem 33703 minplyirred 33704 irngnminplynz 33705 minplym1p 33706 irredminply 33707 algextdeglem4 33711 algextdeglem5 33712 algextdeglem6 33713 algextdeglem7 33714 algextdeglem8 33715 rtelextdg2lem 33717 constrelextdg2 33737 |
Copyright terms: Public domain | W3C validator |