|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > sdrgsubrg | Structured version Visualization version GIF version | ||
| Description: A sub-division-ring is a subring. (Contributed by SN, 19-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| sdrgsubrg | ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | issdrg 20790 | . 2 ⊢ (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) | |
| 2 | 1 | simp2bi 1146 | 1 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 ↾s cress 17275 SubRingcsubrg 20570 DivRingcdr 20730 SubDRingcsdrg 20788 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-br 5143 df-opab 5205 df-mpt 5225 df-id 5577 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-iota 6513 df-fun 6562 df-fv 6568 df-ov 7435 df-sdrg 20789 | 
| This theorem is referenced by: sdrgunit 20798 imadrhmcl 20799 fldsdrgfldext 33713 fldgenfldext 33719 evls1fldgencl 33721 fldextrspunlsplem 33724 fldextrspunlsp 33725 fldextrspunlem1 33726 fldextrspunfld 33727 fldextrspunlem2 33728 fldextrspundgdvdslem 33731 fldextrspundgdvds 33732 minplymindeg 33752 minplyann 33753 minplyirredlem 33754 minplyirred 33755 irngnminplynz 33756 minplym1p 33757 irredminply 33758 algextdeglem4 33762 algextdeglem5 33763 algextdeglem6 33764 algextdeglem7 33765 algextdeglem8 33766 rtelextdg2lem 33768 constrelextdg2 33789 | 
| Copyright terms: Public domain | W3C validator |