MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdrgsubrg Structured version   Visualization version   GIF version

Theorem sdrgsubrg 20756
Description: A sub-division-ring is a subring. (Contributed by SN, 19-Feb-2025.)
Assertion
Ref Expression
sdrgsubrg (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅))

Proof of Theorem sdrgsubrg
StepHypRef Expression
1 issdrg 20753 . 2 (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝐴) ∈ DivRing))
21simp2bi 1146 1 (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  cfv 6536  (class class class)co 7410  s cress 17256  SubRingcsubrg 20534  DivRingcdr 20694  SubDRingcsdrg 20751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-iota 6489  df-fun 6538  df-fv 6544  df-ov 7413  df-sdrg 20752
This theorem is referenced by:  sdrgunit  20761  imadrhmcl  20762  subsdrg  33297  sdrgfldext  33697  fldsdrgfldext  33708  fldgenfldext  33714  evls1fldgencl  33716  fldextrspunlsplem  33719  fldextrspunlsp  33720  fldextrspunlem1  33721  fldextrspunfld  33722  fldextrspunlem2  33723  fldextrspundgdvdslem  33726  fldextrspundgdvds  33727  minplymindeg  33747  minplyann  33748  minplyirredlem  33749  minplyirred  33750  irngnminplynz  33751  minplym1p  33752  minplynzm1p  33753  minplyelirng  33754  irredminply  33755  algextdeglem4  33759  algextdeglem5  33760  algextdeglem6  33761  algextdeglem7  33762  algextdeglem8  33763  rtelextdg2lem  33765  constrelextdg2  33786
  Copyright terms: Public domain W3C validator