| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdrgsubrg | Structured version Visualization version GIF version | ||
| Description: A sub-division-ring is a subring. (Contributed by SN, 19-Feb-2025.) |
| Ref | Expression |
|---|---|
| sdrgsubrg | ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issdrg 20691 | . 2 ⊢ (𝐴 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐴 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐴) ∈ DivRing)) | |
| 2 | 1 | simp2bi 1146 | 1 ⊢ (𝐴 ∈ (SubDRing‘𝑅) → 𝐴 ∈ (SubRing‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 ↾s cress 17159 SubRingcsubrg 20472 DivRingcdr 20632 SubDRingcsdrg 20689 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-sdrg 20690 |
| This theorem is referenced by: sdrgunit 20699 imadrhmcl 20700 subsdrg 33250 sdrgfldext 33625 fldsdrgfldext 33636 fldgenfldext 33642 evls1fldgencl 33644 fldextrspunlsplem 33647 fldextrspunlsp 33648 fldextrspunlem1 33649 fldextrspunfld 33650 fldextrspunlem2 33651 fldextrspundgdvdslem 33654 fldextrspundgdvds 33655 minplymindeg 33677 minplyann 33678 minplyirredlem 33679 minplyirred 33680 irngnminplynz 33681 minplym1p 33682 minplynzm1p 33683 minplyelirng 33684 irredminply 33685 algextdeglem4 33689 algextdeglem5 33690 algextdeglem6 33691 algextdeglem7 33692 algextdeglem8 33693 rtelextdg2lem 33695 constrelextdg2 33716 |
| Copyright terms: Public domain | W3C validator |