MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdrgss Structured version   Visualization version   GIF version

Theorem sdrgss 19569
Description: A division subring is a subset of the base set. (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypothesis
Ref Expression
sdrgid.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
sdrgss (𝑆 ∈ (SubDRing‘𝑅) → 𝑆𝐵)

Proof of Theorem sdrgss
StepHypRef Expression
1 issdrg 19567 . 2 (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing))
2 sdrgid.1 . . . 4 𝐵 = (Base‘𝑅)
32subrgss 19529 . . 3 (𝑆 ∈ (SubRing‘𝑅) → 𝑆𝐵)
433ad2ant2 1129 . 2 ((𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing) → 𝑆𝐵)
51, 4sylbi 219 1 (𝑆 ∈ (SubDRing‘𝑅) → 𝑆𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1082   = wceq 1536  wcel 2113  wss 3929  cfv 6348  (class class class)co 7149  Basecbs 16476  s cress 16477  DivRingcdr 19495  SubRingcsubrg 19524  SubDRingcsdrg 19565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5323
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-sbc 3769  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fv 6356  df-ov 7152  df-subrg 19526  df-sdrg 19566
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator