| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdrgss | Structured version Visualization version GIF version | ||
| Description: A division subring is a subset of the base set. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| Ref | Expression |
|---|---|
| sdrgid.1 | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| sdrgss | ⊢ (𝑆 ∈ (SubDRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issdrg 20703 | . 2 ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing)) | |
| 2 | sdrgid.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 2 | subrgss 20487 | . . 3 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| 4 | 3 | 3ad2ant2 1134 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing) → 𝑆 ⊆ 𝐵) |
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (𝑆 ∈ (SubDRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 ↾s cress 17141 SubRingcsubrg 20484 DivRingcdr 20644 SubDRingcsdrg 20701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-subrg 20485 df-sdrg 20702 |
| This theorem is referenced by: sdrgbas 20709 subsdrg 33264 fldgenidfld 33283 sdrgfldext 33663 fldsdrgfldext 33674 fldsdrgfldext2 33675 fldgenfldext 33681 evls1fldgencl 33683 fldextrspunlsplem 33686 fldextrspunlsp 33687 fldextrspunlem1 33688 fldextrspunfld 33689 fldextrspunlem2 33690 fldextrspundgle 33691 fldextrspundglemul 33692 fldextrspundgdvdslem 33693 fldextrspundgdvds 33694 fldext2rspun 33695 extdgfialglem1 33705 extdgfialglem2 33706 algextdeglem8 33737 rtelextdg2lem 33739 rtelextdg2 33740 constrelextdg2 33760 constrextdg2lem 33761 constrext2chnlem 33763 |
| Copyright terms: Public domain | W3C validator |