| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdrgss | Structured version Visualization version GIF version | ||
| Description: A division subring is a subset of the base set. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| Ref | Expression |
|---|---|
| sdrgid.1 | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| sdrgss | ⊢ (𝑆 ∈ (SubDRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issdrg 20673 | . 2 ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing)) | |
| 2 | sdrgid.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 2 | subrgss 20457 | . . 3 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| 4 | 3 | 3ad2ant2 1134 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing) → 𝑆 ⊆ 𝐵) |
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (𝑆 ∈ (SubDRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3903 ‘cfv 6482 (class class class)co 7349 Basecbs 17120 ↾s cress 17141 SubRingcsubrg 20454 DivRingcdr 20614 SubDRingcsdrg 20671 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-subrg 20455 df-sdrg 20672 |
| This theorem is referenced by: sdrgbas 20679 subsdrg 33238 fldgenidfld 33257 sdrgfldext 33623 fldsdrgfldext 33634 fldsdrgfldext2 33635 fldgenfldext 33641 evls1fldgencl 33643 fldextrspunlsplem 33646 fldextrspunlsp 33647 fldextrspunlem1 33648 fldextrspunfld 33649 fldextrspunlem2 33650 fldextrspundgle 33651 fldextrspundglemul 33652 fldextrspundgdvdslem 33653 fldextrspundgdvds 33654 fldext2rspun 33655 extdgfialglem1 33665 extdgfialglem2 33666 algextdeglem8 33697 rtelextdg2lem 33699 rtelextdg2 33700 constrelextdg2 33720 constrextdg2lem 33721 constrext2chnlem 33723 |
| Copyright terms: Public domain | W3C validator |