MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdrgss Structured version   Visualization version   GIF version

Theorem sdrgss 20409
Description: A division subring is a subset of the base set. (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypothesis
Ref Expression
sdrgid.1 𝐡 = (Baseβ€˜π‘…)
Assertion
Ref Expression
sdrgss (𝑆 ∈ (SubDRingβ€˜π‘…) β†’ 𝑆 βŠ† 𝐡)

Proof of Theorem sdrgss
StepHypRef Expression
1 issdrg 20404 . 2 (𝑆 ∈ (SubDRingβ€˜π‘…) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRingβ€˜π‘…) ∧ (𝑅 β†Ύs 𝑆) ∈ DivRing))
2 sdrgid.1 . . . 4 𝐡 = (Baseβ€˜π‘…)
32subrgss 20320 . . 3 (𝑆 ∈ (SubRingβ€˜π‘…) β†’ 𝑆 βŠ† 𝐡)
433ad2ant2 1135 . 2 ((𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRingβ€˜π‘…) ∧ (𝑅 β†Ύs 𝑆) ∈ DivRing) β†’ 𝑆 βŠ† 𝐡)
51, 4sylbi 216 1 (𝑆 ∈ (SubDRingβ€˜π‘…) β†’ 𝑆 βŠ† 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   βŠ† wss 3949  β€˜cfv 6544  (class class class)co 7409  Basecbs 17144   β†Ύs cress 17173  SubRingcsubrg 20315  DivRingcdr 20357  SubDRingcsdrg 20402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fv 6552  df-ov 7412  df-subrg 20317  df-sdrg 20403
This theorem is referenced by:  sdrgbas  20410  fldgenidfld  32407
  Copyright terms: Public domain W3C validator