Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sdrgss | Structured version Visualization version GIF version |
Description: A division subring is a subset of the base set. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
Ref | Expression |
---|---|
sdrgid.1 | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
sdrgss | ⊢ (𝑆 ∈ (SubDRing‘𝑅) → 𝑆 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | issdrg 20044 | . 2 ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing)) | |
2 | sdrgid.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 2 | subrgss 20006 | . . 3 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ 𝐵) |
4 | 3 | 3ad2ant2 1132 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing) → 𝑆 ⊆ 𝐵) |
5 | 1, 4 | sylbi 216 | 1 ⊢ (𝑆 ∈ (SubDRing‘𝑅) → 𝑆 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ⊆ wss 3891 ‘cfv 6430 (class class class)co 7268 Basecbs 16893 ↾s cress 16922 DivRingcdr 19972 SubRingcsubrg 20001 SubDRingcsdrg 20042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fv 6438 df-ov 7271 df-subrg 20003 df-sdrg 20043 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |