| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdrgss | Structured version Visualization version GIF version | ||
| Description: A division subring is a subset of the base set. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| Ref | Expression |
|---|---|
| sdrgid.1 | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| sdrgss | ⊢ (𝑆 ∈ (SubDRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issdrg 20703 | . 2 ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing)) | |
| 2 | sdrgid.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 2 | subrgss 20487 | . . 3 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| 4 | 3 | 3ad2ant2 1134 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing) → 𝑆 ⊆ 𝐵) |
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (𝑆 ∈ (SubDRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ⊆ wss 3922 ‘cfv 6519 (class class class)co 7394 Basecbs 17185 ↾s cress 17206 SubRingcsubrg 20484 DivRingcdr 20644 SubDRingcsdrg 20701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-mpt 5197 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-iota 6472 df-fun 6521 df-fv 6527 df-ov 7397 df-subrg 20485 df-sdrg 20702 |
| This theorem is referenced by: sdrgbas 20709 subsdrg 33256 fldgenidfld 33275 sdrgfldext 33654 fldsdrgfldext 33665 fldsdrgfldext2 33666 fldgenfldext 33671 evls1fldgencl 33673 fldextrspunlsplem 33676 fldextrspunlsp 33677 fldextrspunlem1 33678 fldextrspunfld 33679 fldextrspunlem2 33680 fldextrspundgle 33681 fldextrspundglemul 33682 fldextrspundgdvdslem 33683 fldextrspundgdvds 33684 fldext2rspun 33685 algextdeglem8 33722 rtelextdg2lem 33724 rtelextdg2 33725 constrelextdg2 33745 constrextdg2lem 33746 constrext2chnlem 33748 |
| Copyright terms: Public domain | W3C validator |