MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdrgss Structured version   Visualization version   GIF version

Theorem sdrgss 20713
Description: A division subring is a subset of the base set. (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypothesis
Ref Expression
sdrgid.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
sdrgss (𝑆 ∈ (SubDRing‘𝑅) → 𝑆𝐵)

Proof of Theorem sdrgss
StepHypRef Expression
1 issdrg 20708 . 2 (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing))
2 sdrgid.1 . . . 4 𝐵 = (Base‘𝑅)
32subrgss 20492 . . 3 (𝑆 ∈ (SubRing‘𝑅) → 𝑆𝐵)
433ad2ant2 1134 . 2 ((𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing) → 𝑆𝐵)
51, 4sylbi 217 1 (𝑆 ∈ (SubDRing‘𝑅) → 𝑆𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wss 3911  cfv 6499  (class class class)co 7369  Basecbs 17155  s cress 17176  SubRingcsubrg 20489  DivRingcdr 20649  SubDRingcsdrg 20706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fv 6507  df-ov 7372  df-subrg 20490  df-sdrg 20707
This theorem is referenced by:  sdrgbas  20714  subsdrg  33264  fldgenidfld  33283  sdrgfldext  33639  fldsdrgfldext  33650  fldsdrgfldext2  33651  fldgenfldext  33656  evls1fldgencl  33658  fldextrspunlsplem  33661  fldextrspunlsp  33662  fldextrspunlem1  33663  fldextrspunfld  33664  fldextrspunlem2  33665  fldextrspundgle  33666  fldextrspundglemul  33667  fldextrspundgdvdslem  33668  fldextrspundgdvds  33669  fldext2rspun  33670  algextdeglem8  33707  rtelextdg2lem  33709  rtelextdg2  33710  constrelextdg2  33730  constrextdg2lem  33731  constrext2chnlem  33733
  Copyright terms: Public domain W3C validator