| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sdrgss | Structured version Visualization version GIF version | ||
| Description: A division subring is a subset of the base set. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| Ref | Expression |
|---|---|
| sdrgid.1 | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| sdrgss | ⊢ (𝑆 ∈ (SubDRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issdrg 20756 | . 2 ⊢ (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing)) | |
| 2 | sdrgid.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 2 | subrgss 20539 | . . 3 ⊢ (𝑆 ∈ (SubRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| 4 | 3 | 3ad2ant2 1134 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝑆) ∈ DivRing) → 𝑆 ⊆ 𝐵) |
| 5 | 1, 4 | sylbi 217 | 1 ⊢ (𝑆 ∈ (SubDRing‘𝑅) → 𝑆 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ⊆ wss 3931 ‘cfv 6540 (class class class)co 7412 Basecbs 17228 ↾s cress 17251 SubRingcsubrg 20536 DivRingcdr 20696 SubDRingcsdrg 20754 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6493 df-fun 6542 df-fv 6548 df-ov 7415 df-subrg 20537 df-sdrg 20755 |
| This theorem is referenced by: sdrgbas 20762 subsdrg 33231 fldgenidfld 33250 sdrgfldext 33629 fldsdrgfldext 33640 fldsdrgfldext2 33641 fldgenfldext 33646 evls1fldgencl 33648 fldextrspunlsplem 33651 fldextrspunlsp 33652 fldextrspunlem1 33653 fldextrspunfld 33654 fldextrspunlem2 33655 fldextrspundgle 33656 fldextrspundglemul 33657 fldextrspundgdvdslem 33658 fldextrspundgdvds 33659 fldext2rspun 33660 algextdeglem8 33695 rtelextdg2lem 33697 rtelextdg2 33698 constrelextdg2 33718 constrextdg2lem 33719 constrext2chnlem 33721 |
| Copyright terms: Public domain | W3C validator |