MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sdrgss Structured version   Visualization version   GIF version

Theorem sdrgss 20046
Description: A division subring is a subset of the base set. (Contributed by Thierry Arnoux, 21-Aug-2023.)
Hypothesis
Ref Expression
sdrgid.1 𝐵 = (Base‘𝑅)
Assertion
Ref Expression
sdrgss (𝑆 ∈ (SubDRing‘𝑅) → 𝑆𝐵)

Proof of Theorem sdrgss
StepHypRef Expression
1 issdrg 20044 . 2 (𝑆 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing))
2 sdrgid.1 . . . 4 𝐵 = (Base‘𝑅)
32subrgss 20006 . . 3 (𝑆 ∈ (SubRing‘𝑅) → 𝑆𝐵)
433ad2ant2 1132 . 2 ((𝑅 ∈ DivRing ∧ 𝑆 ∈ (SubRing‘𝑅) ∧ (𝑅s 𝑆) ∈ DivRing) → 𝑆𝐵)
51, 4sylbi 216 1 (𝑆 ∈ (SubDRing‘𝑅) → 𝑆𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1541  wcel 2109  wss 3891  cfv 6430  (class class class)co 7268  Basecbs 16893  s cress 16922  DivRingcdr 19972  SubRingcsubrg 20001  SubDRingcsdrg 20042
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fv 6438  df-ov 7271  df-subrg 20003  df-sdrg 20043
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator