![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrgss | Structured version Visualization version GIF version |
Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrgss.1 | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
subrgss | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgss.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2740 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | 1, 2 | issubrg 20599 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝐴))) |
4 | 3 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝐴)) |
5 | 4 | simpld 494 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 ↾s cress 17287 1rcur 20208 Ringcrg 20260 SubRingcsubrg 20595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-subrg 20597 |
This theorem is referenced by: subrgsubg 20605 subrg1 20610 subrgsubm 20613 subrgdvds 20614 subrguss 20615 subrginv 20616 subrgdv 20617 subrgmre 20625 subsubrg 20626 issubdrg 20803 sdrgss 20816 sdrgacs 20824 subdrgint 20826 abvres 20854 sralmod 21217 cnsubrg 21468 issubassa3 21909 sraassab 21911 sraassa 21912 sraassaOLD 21913 aspid 21918 issubassa2 21935 resspsrbas 22017 resspsradd 22018 resspsrmul 22019 resspsrvsca 22020 mplassa 22065 ressmplbas2 22068 subrgascl 22113 subrgasclcl 22114 mplind 22117 evlsval2 22134 evlssca 22136 evlsscasrng 22144 mpfconst 22148 mpff 22151 mpfaddcl 22152 mpfmulcl 22153 mpfind 22154 ply1assa 22222 evls1val 22345 evls1rhm 22347 evls1sca 22348 evls1scasrng 22364 pf1f 22375 evls1fpws 22394 evls1vsca 22398 asclply1subcl 22399 evls1maplmhm 22402 sranlm 24726 clmsscn 25131 cphreccllem 25231 cphdivcl 25235 cphabscl 25238 cphsqrtcl2 25239 cphsqrtcl3 25240 cphipcl 25244 4cphipval2 25295 resscdrg 25411 srabn 25413 plypf1 26271 dvply2g 26344 dvply2gOLD 26345 taylply2 26427 taylply2OLD 26428 0ringsubrg 33223 subrdom 33254 fldgenssp 33285 idlinsubrg 33424 ressasclcl 33561 sralvec 33600 lsssra 33603 drgext0g 33604 drgextvsca 33605 drgext0gsca 33606 drgextsubrg 33607 drgextlsp 33608 drgextgsum 33609 fedgmullem1 33642 fedgmullem2 33643 fedgmul 33644 extdggt0 33670 fldexttr 33671 extdg1id 33676 elirng 33686 irngss 33687 0ringirng 33689 ply1annnr 33696 imacrhmcl 42469 evlsval3 42514 evlsvvval 42518 evlsbagval 42521 evlsevl 42526 evlsmhpvvval 42550 mhphf 42552 mhphf2 42553 mhphf3 42554 cnsrexpcl 43122 fsumcnsrcl 43123 cnsrplycl 43124 rgspnid 43129 rngunsnply 43130 |
Copyright terms: Public domain | W3C validator |