![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrgss | Structured version Visualization version GIF version |
Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrgss.1 | β’ π΅ = (Baseβπ ) |
Ref | Expression |
---|---|
subrgss | β’ (π΄ β (SubRingβπ ) β π΄ β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgss.1 | . . . 4 β’ π΅ = (Baseβπ ) | |
2 | eqid 2725 | . . . 4 β’ (1rβπ ) = (1rβπ ) | |
3 | 1, 2 | issubrg 20514 | . . 3 β’ (π΄ β (SubRingβπ ) β ((π β Ring β§ (π βΎs π΄) β Ring) β§ (π΄ β π΅ β§ (1rβπ ) β π΄))) |
4 | 3 | simprbi 495 | . 2 β’ (π΄ β (SubRingβπ ) β (π΄ β π΅ β§ (1rβπ ) β π΄)) |
5 | 4 | simpld 493 | 1 β’ (π΄ β (SubRingβπ ) β π΄ β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1533 β wcel 2098 β wss 3945 βcfv 6547 (class class class)co 7417 Basecbs 17179 βΎs cress 17208 1rcur 20125 Ringcrg 20177 SubRingcsubrg 20510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5299 ax-nul 5306 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6499 df-fun 6549 df-fv 6555 df-ov 7420 df-subrg 20512 |
This theorem is referenced by: subrgsubg 20520 subrg1 20525 subrgsubm 20528 subrgdvds 20529 subrguss 20530 subrginv 20531 subrgdv 20532 subrgmre 20540 subsubrg 20541 issubdrg 20672 sdrgss 20685 sdrgacs 20693 subdrgint 20695 abvres 20723 sralmod 21084 cnsubrg 21364 issubassa3 21803 sraassab 21805 sraassa 21806 sraassaOLD 21807 aspid 21812 issubassa2 21829 resspsrbas 21923 resspsradd 21924 resspsrmul 21925 resspsrvsca 21926 mplassa 21971 ressmplbas2 21972 subrgascl 22017 subrgasclcl 22018 mplind 22021 evlsval2 22040 evlssca 22042 evlsscasrng 22050 mpfconst 22054 mpff 22057 mpfaddcl 22058 mpfmulcl 22059 mpfind 22060 ply1assa 22127 evls1val 22248 evls1rhm 22250 evls1sca 22251 evls1scasrng 22267 pf1f 22278 evls1fpws 22297 evls1vsca 22301 asclply1subcl 22302 evls1maplmhm 22305 sranlm 24631 clmsscn 25036 cphreccllem 25136 cphdivcl 25140 cphabscl 25143 cphsqrtcl2 25144 cphsqrtcl3 25145 cphipcl 25149 4cphipval2 25200 resscdrg 25316 srabn 25318 plypf1 26176 dvply2g 26249 dvply2gOLD 26250 taylply2 26332 taylply2OLD 26333 0ringsubrg 33005 subrdom 33034 fldgenssp 33065 idlinsubrg 33209 sralvec 33355 lsssra 33358 drgext0g 33359 drgextvsca 33360 drgext0gsca 33361 drgextsubrg 33362 drgextlsp 33363 drgextgsum 33364 fedgmullem1 33397 fedgmullem2 33398 fedgmul 33399 extdggt0 33419 fldexttr 33420 extdg1id 33425 elirng 33434 irngss 33435 0ringirng 33437 ply1annnr 33444 imacrhmcl 41819 evlsval3 41857 evlsvvval 41861 evlsbagval 41864 evlsevl 41869 evlsmhpvvval 41893 mhphf 41895 mhphf2 41896 mhphf3 41897 cnsrexpcl 42654 fsumcnsrcl 42655 cnsrplycl 42656 rgspnid 42661 rngunsnply 42662 |
Copyright terms: Public domain | W3C validator |