| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgss | Structured version Visualization version GIF version | ||
| Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| subrgss.1 | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| subrgss | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgss.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2729 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | 1, 2 | issubrg 20480 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝐴))) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝐴)) |
| 5 | 4 | simpld 494 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 1rcur 20090 Ringcrg 20142 SubRingcsubrg 20478 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-subrg 20479 |
| This theorem is referenced by: subrgsubg 20486 subrg1 20491 subrgsubm 20494 subrgdvds 20495 subrguss 20496 subrginv 20497 subrgdv 20498 subrgmre 20506 subsubrg 20507 issubdrg 20689 sdrgss 20702 sdrgacs 20710 subdrgint 20712 abvres 20740 sralmod 21094 cnsubrg 21344 issubassa3 21775 sraassab 21777 sraassa 21778 sraassaOLD 21779 aspid 21784 issubassa2 21801 resspsrbas 21883 resspsradd 21884 resspsrmul 21885 resspsrvsca 21886 mplassa 21931 ressmplbas2 21934 subrgascl 21973 subrgasclcl 21974 mplind 21977 evlsval2 21994 evlssca 21996 evlsscasrng 22004 mpfconst 22008 mpff 22011 mpfaddcl 22012 mpfmulcl 22013 mpfind 22014 ply1assa 22084 evls1val 22207 evls1rhm 22209 evls1sca 22210 evls1scasrng 22226 pf1f 22237 evls1fpws 22256 evls1vsca 22260 asclply1subcl 22261 evls1maplmhm 22264 sranlm 24572 clmsscn 24979 cphreccllem 25078 cphdivcl 25082 cphabscl 25085 cphsqrtcl2 25086 cphsqrtcl3 25087 cphipcl 25091 4cphipval2 25142 resscdrg 25258 srabn 25260 plypf1 26117 dvply2g 26192 dvply2gOLD 26193 taylply2 26275 taylply2OLD 26276 elrgspn 33197 elrgspnsubrunlem1 33198 elrgspnsubrunlem2 33199 elrgspnsubrun 33200 0ringsubrg 33202 subrdom 33235 fldgenssp 33268 idlinsubrg 33402 ressply1evls1 33534 ressasclcl 33540 vr1nz 33559 sralvec 33581 lsssra 33584 drgext0g 33585 drgextvsca 33586 drgext0gsca 33587 drgextsubrg 33588 drgextlsp 33589 drgextgsum 33590 fedgmullem1 33625 fedgmullem2 33626 fedgmul 33627 extdggt0 33653 fldexttr 33654 extdg1id 33661 fldextrspunlsp 33669 fldextrspunlem1 33670 fldextrspunfld 33671 elirng 33681 irngss 33682 0ringirng 33684 ply1annnr 33693 imacrhmcl 42502 evlsval3 42547 evlsvvval 42551 evlsbagval 42554 evlsevl 42559 evlsmhpvvval 42583 mhphf 42585 mhphf2 42586 mhphf3 42587 cnsrexpcl 43154 fsumcnsrcl 43155 cnsrplycl 43156 rgspnid 43157 rngunsnply 43158 |
| Copyright terms: Public domain | W3C validator |