![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrgss | Structured version Visualization version GIF version |
Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrgss.1 | β’ π΅ = (Baseβπ ) |
Ref | Expression |
---|---|
subrgss | β’ (π΄ β (SubRingβπ ) β π΄ β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgss.1 | . . . 4 β’ π΅ = (Baseβπ ) | |
2 | eqid 2727 | . . . 4 β’ (1rβπ ) = (1rβπ ) | |
3 | 1, 2 | issubrg 20499 | . . 3 β’ (π΄ β (SubRingβπ ) β ((π β Ring β§ (π βΎs π΄) β Ring) β§ (π΄ β π΅ β§ (1rβπ ) β π΄))) |
4 | 3 | simprbi 496 | . 2 β’ (π΄ β (SubRingβπ ) β (π΄ β π΅ β§ (1rβπ ) β π΄)) |
5 | 4 | simpld 494 | 1 β’ (π΄ β (SubRingβπ ) β π΄ β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 395 = wceq 1534 β wcel 2099 β wss 3944 βcfv 6542 (class class class)co 7414 Basecbs 17171 βΎs cress 17200 1rcur 20112 Ringcrg 20164 SubRingcsubrg 20495 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 df-subrg 20497 |
This theorem is referenced by: subrgsubg 20505 subrg1 20510 subrgsubm 20513 subrgdvds 20514 subrguss 20515 subrginv 20516 subrgdv 20517 subrgmre 20525 subsubrg 20526 issubdrg 20657 sdrgss 20670 sdrgacs 20678 subdrgint 20680 abvres 20708 sralmod 21069 cnsubrg 21347 issubassa3 21786 sraassab 21788 sraassa 21789 sraassaOLD 21790 aspid 21795 issubassa2 21812 resspsrbas 21904 resspsradd 21905 resspsrmul 21906 resspsrvsca 21907 mplassa 21951 ressmplbas2 21952 subrgascl 21997 subrgasclcl 21998 mplind 22001 evlsval2 22020 evlssca 22022 evlsscasrng 22030 mpfconst 22034 mpff 22037 mpfaddcl 22038 mpfmulcl 22039 mpfind 22040 ply1assa 22105 evls1val 22226 evls1rhm 22228 evls1sca 22229 evls1scasrng 22245 pf1f 22256 sranlm 24588 clmsscn 24993 cphreccllem 25093 cphdivcl 25097 cphabscl 25100 cphsqrtcl2 25101 cphsqrtcl3 25102 cphipcl 25106 4cphipval2 25157 resscdrg 25273 srabn 25275 plypf1 26133 dvply2g 26206 dvply2gOLD 26207 taylply2 26289 taylply2OLD 26290 0ringsubrg 32917 fldgenssp 32945 idlinsubrg 33082 evls1fpws 33182 evls1vsca 33187 asclply1subcl 33193 sralvec 33217 lsssra 33220 drgext0g 33221 drgextvsca 33222 drgext0gsca 33223 drgextsubrg 33224 drgextlsp 33225 drgextgsum 33226 fedgmullem1 33259 fedgmullem2 33260 fedgmul 33261 extdggt0 33281 fldexttr 33282 extdg1id 33287 elirng 33296 irngss 33297 0ringirng 33299 evls1maplmhm 33306 ply1annnr 33310 imacrhmcl 41673 evlsval3 41714 evlsvvval 41718 evlsbagval 41721 evlsevl 41726 evlsmhpvvval 41750 mhphf 41752 mhphf2 41753 mhphf3 41754 cnsrexpcl 42511 fsumcnsrcl 42512 cnsrplycl 42513 rgspnid 42518 rngunsnply 42519 |
Copyright terms: Public domain | W3C validator |