Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgss | Structured version Visualization version GIF version |
Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrgss.1 | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
subrgss | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgss.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2738 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | 1, 2 | issubrg 20024 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝐴))) |
4 | 3 | simprbi 497 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝐴)) |
5 | 4 | simpld 495 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 ↾s cress 16941 1rcur 19737 Ringcrg 19783 SubRingcsubrg 20020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-subrg 20022 |
This theorem is referenced by: subrgsubg 20030 subrg1 20034 subrgsubm 20037 subrgdvds 20038 subrguss 20039 subrginv 20040 subrgdv 20041 subrgmre 20048 issubdrg 20049 subsubrg 20050 sdrgss 20065 sdrgacs 20069 subdrgint 20071 abvres 20099 sralmod 20457 cnsubrg 20658 issubassa3 21072 sraassa 21074 aspid 21079 issubassa2 21096 resspsrbas 21184 resspsradd 21185 resspsrmul 21186 resspsrvsca 21187 mplassa 21227 ressmplbas2 21228 subrgascl 21274 subrgasclcl 21275 mplind 21278 evlsval2 21297 evlssca 21299 evlsscasrng 21307 mpfconst 21311 mpff 21314 mpfaddcl 21315 mpfmulcl 21316 mpfind 21317 ply1assa 21370 evls1val 21486 evls1rhm 21488 evls1sca 21489 evls1scasrng 21505 pf1f 21516 sranlm 23848 clmsscn 24242 cphreccllem 24342 cphdivcl 24346 cphabscl 24349 cphsqrtcl2 24350 cphsqrtcl3 24351 cphipcl 24355 4cphipval2 24406 resscdrg 24522 srabn 24524 plypf1 25373 dvply2g 25445 taylply2 25527 idlinsubrg 31608 sralvec 31675 drgext0g 31677 drgextvsca 31678 drgext0gsca 31679 drgextsubrg 31680 drgextlsp 31681 drgextgsum 31682 fedgmullem1 31710 fedgmullem2 31711 fedgmul 31712 extdggt0 31732 fldexttr 31733 extdg1id 31738 selvval2lem4 40228 evlsval3 40272 evlsbagval 40275 mhphf 40285 mhphf2 40286 mhphf3 40287 cnsrexpcl 40990 fsumcnsrcl 40991 cnsrplycl 40992 rgspnid 40997 rngunsnply 40998 |
Copyright terms: Public domain | W3C validator |