| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgss | Structured version Visualization version GIF version | ||
| Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| subrgss.1 | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| subrgss | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgss.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2730 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | 1, 2 | issubrg 20479 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝐴))) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝐴)) |
| 5 | 4 | simpld 494 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2110 ⊆ wss 3900 ‘cfv 6477 (class class class)co 7341 Basecbs 17112 ↾s cress 17133 1rcur 20092 Ringcrg 20144 SubRingcsubrg 20477 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6433 df-fun 6479 df-fv 6485 df-ov 7344 df-subrg 20478 |
| This theorem is referenced by: subrgsubg 20485 subrg1 20490 subrgsubm 20493 subrgdvds 20494 subrguss 20495 subrginv 20496 subrgdv 20497 subrgmre 20505 subsubrg 20506 issubdrg 20688 sdrgss 20701 sdrgacs 20709 subdrgint 20711 abvres 20739 sralmod 21114 cnsubrg 21357 issubassa3 21796 sraassab 21798 sraassa 21799 sraassaOLD 21800 aspid 21805 issubassa2 21822 resspsrbas 21904 resspsradd 21905 resspsrmul 21906 resspsrvsca 21907 mplassa 21952 ressmplbas2 21955 subrgascl 21994 subrgasclcl 21995 mplind 21998 evlsval2 22015 evlssca 22017 evlsscasrng 22025 mpfconst 22029 mpff 22032 mpfaddcl 22033 mpfmulcl 22034 mpfind 22035 ply1assa 22105 evls1val 22228 evls1rhm 22230 evls1sca 22231 evls1scasrng 22247 pf1f 22258 evls1fpws 22277 evls1vsca 22281 asclply1subcl 22282 evls1maplmhm 22285 sranlm 24592 clmsscn 24999 cphreccllem 25098 cphdivcl 25102 cphabscl 25105 cphsqrtcl2 25106 cphsqrtcl3 25107 cphipcl 25111 4cphipval2 25162 resscdrg 25278 srabn 25280 plypf1 26137 dvply2g 26212 dvply2gOLD 26213 taylply2 26295 taylply2OLD 26296 elrgspn 33203 elrgspnsubrunlem1 33204 elrgspnsubrunlem2 33205 elrgspnsubrun 33206 0ringsubrg 33208 subrdom 33241 fldgenssp 33274 idlinsubrg 33386 ressply1evls1 33518 ressasclcl 33524 vr1nz 33544 sralvec 33587 lsssra 33590 drgext0g 33592 drgextvsca 33593 drgext0gsca 33594 drgextsubrg 33595 drgextlsp 33596 drgextgsum 33597 fedgmullem1 33632 fedgmullem2 33633 fedgmul 33634 extdggt0 33660 fldexttr 33661 extdg1id 33669 fldextrspunlsp 33677 fldextrspunlem1 33678 fldextrspunfld 33679 elirng 33689 irngss 33690 0ringirng 33692 ply1annnr 33706 imacrhmcl 42526 evlsval3 42571 evlsvvval 42575 evlsbagval 42578 evlsevl 42583 evlsmhpvvval 42607 mhphf 42609 mhphf2 42610 mhphf3 42611 cnsrexpcl 43177 fsumcnsrcl 43178 cnsrplycl 43179 rgspnid 43180 rngunsnply 43181 |
| Copyright terms: Public domain | W3C validator |