| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgss | Structured version Visualization version GIF version | ||
| Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| subrgss.1 | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| subrgss | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgss.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2731 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | 1, 2 | issubrg 20492 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝐴))) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝐴)) |
| 5 | 4 | simpld 494 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6487 (class class class)co 7352 Basecbs 17126 ↾s cress 17147 1rcur 20105 Ringcrg 20157 SubRingcsubrg 20490 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6443 df-fun 6489 df-fv 6495 df-ov 7355 df-subrg 20491 |
| This theorem is referenced by: subrgsubg 20498 subrg1 20503 subrgsubm 20506 subrgdvds 20507 subrguss 20508 subrginv 20509 subrgdv 20510 subrgmre 20518 subsubrg 20519 issubdrg 20701 sdrgss 20714 sdrgacs 20722 subdrgint 20724 abvres 20752 sralmod 21127 cnsubrg 21370 issubassa3 21809 sraassab 21811 sraassa 21812 sraassaOLD 21813 aspid 21818 issubassa2 21835 resspsrbas 21917 resspsradd 21918 resspsrmul 21919 resspsrvsca 21920 mplassa 21965 ressmplbas2 21968 subrgascl 22007 subrgasclcl 22008 mplind 22011 evlsval2 22028 evlssca 22030 evlsscasrng 22038 mpfconst 22042 mpff 22045 mpfaddcl 22046 mpfmulcl 22047 mpfind 22048 ply1assa 22118 evls1val 22241 evls1rhm 22243 evls1sca 22244 evls1scasrng 22260 pf1f 22271 evls1fpws 22290 evls1vsca 22294 asclply1subcl 22295 evls1maplmhm 22298 sranlm 24605 clmsscn 25012 cphreccllem 25111 cphdivcl 25115 cphabscl 25118 cphsqrtcl2 25119 cphsqrtcl3 25120 cphipcl 25124 4cphipval2 25175 resscdrg 25291 srabn 25293 plypf1 26150 dvply2g 26225 dvply2gOLD 26226 taylply2 26308 taylply2OLD 26309 elrgspn 33220 elrgspnsubrunlem1 33221 elrgspnsubrunlem2 33222 elrgspnsubrun 33223 0ringsubrg 33225 subrdom 33258 fldgenssp 33291 idlinsubrg 33403 ressply1evls1 33535 ressasclcl 33541 vr1nz 33561 sralvec 33604 lsssra 33607 drgext0g 33609 drgextvsca 33610 drgext0gsca 33611 drgextsubrg 33612 drgextlsp 33613 drgextgsum 33614 fedgmullem1 33649 fedgmullem2 33650 fedgmul 33651 extdggt0 33677 fldexttr 33678 extdg1id 33686 fldextrspunlsp 33694 fldextrspunlem1 33695 fldextrspunfld 33696 elirng 33706 irngss 33707 0ringirng 33709 ply1annnr 33723 imacrhmcl 42613 evlsval3 42658 evlsvvval 42662 evlsbagval 42665 evlsevl 42670 evlsmhpvvval 42694 mhphf 42696 mhphf2 42697 mhphf3 42698 cnsrexpcl 43263 fsumcnsrcl 43264 cnsrplycl 43265 rgspnid 43266 rngunsnply 43267 |
| Copyright terms: Public domain | W3C validator |