Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgss | Structured version Visualization version GIF version |
Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrgss.1 | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
subrgss | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgss.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2738 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | 1, 2 | issubrg 19939 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝐴))) |
4 | 3 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝐴)) |
5 | 4 | simpld 494 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⊆ wss 3883 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ↾s cress 16867 1rcur 19652 Ringcrg 19698 SubRingcsubrg 19935 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-subrg 19937 |
This theorem is referenced by: subrgsubg 19945 subrg1 19949 subrgsubm 19952 subrgdvds 19953 subrguss 19954 subrginv 19955 subrgdv 19956 subrgmre 19963 issubdrg 19964 subsubrg 19965 sdrgss 19980 sdrgacs 19984 subdrgint 19986 abvres 20014 sralmod 20370 cnsubrg 20570 issubassa3 20982 sraassa 20984 aspid 20989 issubassa2 21006 resspsrbas 21094 resspsradd 21095 resspsrmul 21096 resspsrvsca 21097 mplassa 21137 ressmplbas2 21138 subrgascl 21184 subrgasclcl 21185 mplind 21188 evlsval2 21207 evlssca 21209 evlsscasrng 21217 mpfconst 21221 mpff 21224 mpfaddcl 21225 mpfmulcl 21226 mpfind 21227 ply1assa 21280 evls1val 21396 evls1rhm 21398 evls1sca 21399 evls1scasrng 21415 pf1f 21426 sranlm 23754 clmsscn 24148 cphreccllem 24247 cphdivcl 24251 cphabscl 24254 cphsqrtcl2 24255 cphsqrtcl3 24256 cphipcl 24260 4cphipval2 24311 resscdrg 24427 srabn 24429 plypf1 25278 dvply2g 25350 taylply2 25432 idlinsubrg 31510 sralvec 31577 drgext0g 31579 drgextvsca 31580 drgext0gsca 31581 drgextsubrg 31582 drgextlsp 31583 drgextgsum 31584 fedgmullem1 31612 fedgmullem2 31613 fedgmul 31614 extdggt0 31634 fldexttr 31635 extdg1id 31640 selvval2lem4 40154 evlsval3 40195 evlsbagval 40198 mhphf 40208 mhphf2 40209 cnsrexpcl 40906 fsumcnsrcl 40907 cnsrplycl 40908 rgspnid 40913 rngunsnply 40914 |
Copyright terms: Public domain | W3C validator |