![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrgss | Structured version Visualization version GIF version |
Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrgss.1 | β’ π΅ = (Baseβπ ) |
Ref | Expression |
---|---|
subrgss | β’ (π΄ β (SubRingβπ ) β π΄ β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgss.1 | . . . 4 β’ π΅ = (Baseβπ ) | |
2 | eqid 2732 | . . . 4 β’ (1rβπ ) = (1rβπ ) | |
3 | 1, 2 | issubrg 20461 | . . 3 β’ (π΄ β (SubRingβπ ) β ((π β Ring β§ (π βΎs π΄) β Ring) β§ (π΄ β π΅ β§ (1rβπ ) β π΄))) |
4 | 3 | simprbi 497 | . 2 β’ (π΄ β (SubRingβπ ) β (π΄ β π΅ β§ (1rβπ ) β π΄)) |
5 | 4 | simpld 495 | 1 β’ (π΄ β (SubRingβπ ) β π΄ β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β wss 3948 βcfv 6543 (class class class)co 7411 Basecbs 17148 βΎs cress 17177 1rcur 20075 Ringcrg 20127 SubRingcsubrg 20457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7414 df-subrg 20459 |
This theorem is referenced by: subrgsubg 20467 subrg1 20472 subrgsubm 20475 subrgdvds 20476 subrguss 20477 subrginv 20478 subrgdv 20479 subrgmre 20487 subsubrg 20488 issubdrg 20544 sdrgss 20552 sdrgacs 20560 subdrgint 20562 abvres 20590 sralmod 20954 cnsubrg 21205 issubassa3 21639 sraassab 21641 sraassa 21642 sraassaOLD 21643 aspid 21648 issubassa2 21665 resspsrbas 21754 resspsradd 21755 resspsrmul 21756 resspsrvsca 21757 mplassa 21800 ressmplbas2 21801 subrgascl 21846 subrgasclcl 21847 mplind 21850 evlsval2 21869 evlssca 21871 evlsscasrng 21879 mpfconst 21883 mpff 21886 mpfaddcl 21887 mpfmulcl 21888 mpfind 21889 ply1assa 21942 evls1val 22059 evls1rhm 22061 evls1sca 22062 evls1scasrng 22078 pf1f 22089 sranlm 24421 clmsscn 24819 cphreccllem 24919 cphdivcl 24923 cphabscl 24926 cphsqrtcl2 24927 cphsqrtcl3 24928 cphipcl 24932 4cphipval2 24983 resscdrg 25099 srabn 25101 plypf1 25950 dvply2g 26022 taylply2 26104 0ringsubrg 32637 fldgenssp 32666 idlinsubrg 32811 evls1fpws 32908 evls1vsca 32912 asclply1subcl 32922 sralvec 32948 lsssra 32951 drgext0g 32952 drgextvsca 32953 drgext0gsca 32954 drgextsubrg 32955 drgextlsp 32956 drgextgsum 32957 fedgmullem1 32990 fedgmullem2 32991 fedgmul 32992 extdggt0 33012 fldexttr 33013 extdg1id 33018 elirng 33027 irngss 33028 0ringirng 33030 evls1maplmhm 33037 ply1annnr 33041 imacrhmcl 41393 evlsval3 41433 evlsvvval 41437 evlsbagval 41440 evlsevl 41445 evlsmhpvvval 41469 mhphf 41471 mhphf2 41472 mhphf3 41473 cnsrexpcl 42209 fsumcnsrcl 42210 cnsrplycl 42211 rgspnid 42216 rngunsnply 42217 |
Copyright terms: Public domain | W3C validator |