| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgss | Structured version Visualization version GIF version | ||
| Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| subrgss.1 | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| subrgss | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgss.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2730 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | 1, 2 | issubrg 20487 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝐴))) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝐴)) |
| 5 | 4 | simpld 494 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 ↾s cress 17207 1rcur 20097 Ringcrg 20149 SubRingcsubrg 20485 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-subrg 20486 |
| This theorem is referenced by: subrgsubg 20493 subrg1 20498 subrgsubm 20501 subrgdvds 20502 subrguss 20503 subrginv 20504 subrgdv 20505 subrgmre 20513 subsubrg 20514 issubdrg 20696 sdrgss 20709 sdrgacs 20717 subdrgint 20719 abvres 20747 sralmod 21101 cnsubrg 21351 issubassa3 21782 sraassab 21784 sraassa 21785 sraassaOLD 21786 aspid 21791 issubassa2 21808 resspsrbas 21890 resspsradd 21891 resspsrmul 21892 resspsrvsca 21893 mplassa 21938 ressmplbas2 21941 subrgascl 21980 subrgasclcl 21981 mplind 21984 evlsval2 22001 evlssca 22003 evlsscasrng 22011 mpfconst 22015 mpff 22018 mpfaddcl 22019 mpfmulcl 22020 mpfind 22021 ply1assa 22091 evls1val 22214 evls1rhm 22216 evls1sca 22217 evls1scasrng 22233 pf1f 22244 evls1fpws 22263 evls1vsca 22267 asclply1subcl 22268 evls1maplmhm 22271 sranlm 24579 clmsscn 24986 cphreccllem 25085 cphdivcl 25089 cphabscl 25092 cphsqrtcl2 25093 cphsqrtcl3 25094 cphipcl 25098 4cphipval2 25149 resscdrg 25265 srabn 25267 plypf1 26124 dvply2g 26199 dvply2gOLD 26200 taylply2 26282 taylply2OLD 26283 elrgspn 33204 elrgspnsubrunlem1 33205 elrgspnsubrunlem2 33206 elrgspnsubrun 33207 0ringsubrg 33209 subrdom 33242 fldgenssp 33275 idlinsubrg 33409 ressply1evls1 33541 ressasclcl 33547 vr1nz 33566 sralvec 33588 lsssra 33591 drgext0g 33592 drgextvsca 33593 drgext0gsca 33594 drgextsubrg 33595 drgextlsp 33596 drgextgsum 33597 fedgmullem1 33632 fedgmullem2 33633 fedgmul 33634 extdggt0 33660 fldexttr 33661 extdg1id 33668 fldextrspunlsp 33676 fldextrspunlem1 33677 fldextrspunfld 33678 elirng 33688 irngss 33689 0ringirng 33691 ply1annnr 33700 imacrhmcl 42509 evlsval3 42554 evlsvvval 42558 evlsbagval 42561 evlsevl 42566 evlsmhpvvval 42590 mhphf 42592 mhphf2 42593 mhphf3 42594 cnsrexpcl 43161 fsumcnsrcl 43162 cnsrplycl 43163 rgspnid 43164 rngunsnply 43165 |
| Copyright terms: Public domain | W3C validator |