| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgss | Structured version Visualization version GIF version | ||
| Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| subrgss.1 | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| subrgss | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgss.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2735 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | 1, 2 | issubrg 20531 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝐴))) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝐴)) |
| 5 | 4 | simpld 494 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ⊆ wss 3926 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 ↾s cress 17251 1rcur 20141 Ringcrg 20193 SubRingcsubrg 20529 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-subrg 20530 |
| This theorem is referenced by: subrgsubg 20537 subrg1 20542 subrgsubm 20545 subrgdvds 20546 subrguss 20547 subrginv 20548 subrgdv 20549 subrgmre 20557 subsubrg 20558 issubdrg 20740 sdrgss 20753 sdrgacs 20761 subdrgint 20763 abvres 20791 sralmod 21145 cnsubrg 21395 issubassa3 21826 sraassab 21828 sraassa 21829 sraassaOLD 21830 aspid 21835 issubassa2 21852 resspsrbas 21934 resspsradd 21935 resspsrmul 21936 resspsrvsca 21937 mplassa 21982 ressmplbas2 21985 subrgascl 22024 subrgasclcl 22025 mplind 22028 evlsval2 22045 evlssca 22047 evlsscasrng 22055 mpfconst 22059 mpff 22062 mpfaddcl 22063 mpfmulcl 22064 mpfind 22065 ply1assa 22135 evls1val 22258 evls1rhm 22260 evls1sca 22261 evls1scasrng 22277 pf1f 22288 evls1fpws 22307 evls1vsca 22311 asclply1subcl 22312 evls1maplmhm 22315 sranlm 24623 clmsscn 25030 cphreccllem 25130 cphdivcl 25134 cphabscl 25137 cphsqrtcl2 25138 cphsqrtcl3 25139 cphipcl 25143 4cphipval2 25194 resscdrg 25310 srabn 25312 plypf1 26169 dvply2g 26244 dvply2gOLD 26245 taylply2 26327 taylply2OLD 26328 elrgspn 33241 elrgspnsubrunlem1 33242 elrgspnsubrunlem2 33243 elrgspnsubrun 33244 0ringsubrg 33246 subrdom 33279 fldgenssp 33312 idlinsubrg 33446 ressply1evls1 33578 ressasclcl 33584 vr1nz 33603 sralvec 33625 lsssra 33628 drgext0g 33629 drgextvsca 33630 drgext0gsca 33631 drgextsubrg 33632 drgextlsp 33633 drgextgsum 33634 fedgmullem1 33669 fedgmullem2 33670 fedgmul 33671 extdggt0 33699 fldexttr 33700 extdg1id 33707 fldextrspunlsp 33715 fldextrspunlem1 33716 fldextrspunfld 33717 elirng 33727 irngss 33728 0ringirng 33730 ply1annnr 33737 imacrhmcl 42537 evlsval3 42582 evlsvvval 42586 evlsbagval 42589 evlsevl 42594 evlsmhpvvval 42618 mhphf 42620 mhphf2 42621 mhphf3 42622 cnsrexpcl 43189 fsumcnsrcl 43190 cnsrplycl 43191 rgspnid 43192 rngunsnply 43193 |
| Copyright terms: Public domain | W3C validator |