| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > subrgss | Structured version Visualization version GIF version | ||
| Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| Ref | Expression |
|---|---|
| subrgss.1 | ⊢ 𝐵 = (Base‘𝑅) |
| Ref | Expression |
|---|---|
| subrgss | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgss.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | eqid 2729 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 3 | 1, 2 | issubrg 20474 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝐴))) |
| 4 | 3 | simprbi 496 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝐴)) |
| 5 | 4 | simpld 494 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3905 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 ↾s cress 17159 1rcur 20084 Ringcrg 20136 SubRingcsubrg 20472 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7356 df-subrg 20473 |
| This theorem is referenced by: subrgsubg 20480 subrg1 20485 subrgsubm 20488 subrgdvds 20489 subrguss 20490 subrginv 20491 subrgdv 20492 subrgmre 20500 subsubrg 20501 issubdrg 20683 sdrgss 20696 sdrgacs 20704 subdrgint 20706 abvres 20734 sralmod 21109 cnsubrg 21352 issubassa3 21791 sraassab 21793 sraassa 21794 sraassaOLD 21795 aspid 21800 issubassa2 21817 resspsrbas 21899 resspsradd 21900 resspsrmul 21901 resspsrvsca 21902 mplassa 21947 ressmplbas2 21950 subrgascl 21989 subrgasclcl 21990 mplind 21993 evlsval2 22010 evlssca 22012 evlsscasrng 22020 mpfconst 22024 mpff 22027 mpfaddcl 22028 mpfmulcl 22029 mpfind 22030 ply1assa 22100 evls1val 22223 evls1rhm 22225 evls1sca 22226 evls1scasrng 22242 pf1f 22253 evls1fpws 22272 evls1vsca 22276 asclply1subcl 22277 evls1maplmhm 22280 sranlm 24588 clmsscn 24995 cphreccllem 25094 cphdivcl 25098 cphabscl 25101 cphsqrtcl2 25102 cphsqrtcl3 25103 cphipcl 25107 4cphipval2 25158 resscdrg 25274 srabn 25276 plypf1 26133 dvply2g 26208 dvply2gOLD 26209 taylply2 26291 taylply2OLD 26292 elrgspn 33196 elrgspnsubrunlem1 33197 elrgspnsubrunlem2 33198 elrgspnsubrun 33199 0ringsubrg 33201 subrdom 33234 fldgenssp 33267 idlinsubrg 33378 ressply1evls1 33510 ressasclcl 33516 vr1nz 33535 sralvec 33557 lsssra 33560 drgext0g 33561 drgextvsca 33562 drgext0gsca 33563 drgextsubrg 33564 drgextlsp 33565 drgextgsum 33566 fedgmullem1 33601 fedgmullem2 33602 fedgmul 33603 extdggt0 33629 fldexttr 33630 extdg1id 33637 fldextrspunlsp 33645 fldextrspunlem1 33646 fldextrspunfld 33647 elirng 33657 irngss 33658 0ringirng 33660 ply1annnr 33669 imacrhmcl 42487 evlsval3 42532 evlsvvval 42536 evlsbagval 42539 evlsevl 42544 evlsmhpvvval 42568 mhphf 42570 mhphf2 42571 mhphf3 42572 cnsrexpcl 43138 fsumcnsrcl 43139 cnsrplycl 43140 rgspnid 43141 rngunsnply 43142 |
| Copyright terms: Public domain | W3C validator |