Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgss | Structured version Visualization version GIF version |
Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrgss.1 | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
subrgss | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgss.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
2 | eqid 2738 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
3 | 1, 2 | issubrg 19654 | . . 3 ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝐴))) |
4 | 3 | simprbi 500 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → (𝐴 ⊆ 𝐵 ∧ (1r‘𝑅) ∈ 𝐴)) |
5 | 4 | simpld 498 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1542 ∈ wcel 2114 ⊆ wss 3843 ‘cfv 6339 (class class class)co 7170 Basecbs 16586 ↾s cress 16587 1rcur 19370 Ringcrg 19416 SubRingcsubrg 19650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-sbc 3681 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-mpt 5111 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-iota 6297 df-fun 6341 df-fv 6347 df-ov 7173 df-subrg 19652 |
This theorem is referenced by: subrgsubg 19660 subrg1 19664 subrgsubm 19667 subrgdvds 19668 subrguss 19669 subrginv 19670 subrgdv 19671 subrgmre 19678 issubdrg 19679 subsubrg 19680 sdrgss 19695 sdrgacs 19699 subdrgint 19701 abvres 19729 sralmod 20078 cnsubrg 20277 issubassa3 20681 sraassa 20683 aspid 20688 issubassa2 20706 resspsrbas 20794 resspsradd 20795 resspsrmul 20796 resspsrvsca 20797 mplassa 20837 ressmplbas2 20838 subrgascl 20878 subrgasclcl 20879 mplind 20882 evlsval2 20901 evlssca 20903 evlsscasrng 20911 mpfconst 20915 mpff 20918 mpfaddcl 20919 mpfmulcl 20920 mpfind 20921 ply1assa 20974 evls1val 21090 evls1rhm 21092 evls1sca 21093 evls1scasrng 21109 pf1f 21120 sranlm 23437 clmsscn 23831 cphreccllem 23930 cphdivcl 23934 cphabscl 23937 cphsqrtcl2 23938 cphsqrtcl3 23939 cphipcl 23943 4cphipval2 23994 resscdrg 24110 srabn 24112 plypf1 24961 dvply2g 25033 taylply2 25115 idlinsubrg 31180 sralvec 31247 drgext0g 31249 drgextvsca 31250 drgext0gsca 31251 drgextsubrg 31252 drgextlsp 31253 drgextgsum 31254 fedgmullem1 31282 fedgmullem2 31283 fedgmul 31284 extdggt0 31304 fldexttr 31305 extdg1id 31310 selvval2lem4 39810 evlsval3 39851 evlsbagval 39854 mhphf 39864 cnsrexpcl 40562 fsumcnsrcl 40563 cnsrplycl 40564 rgspnid 40569 rngunsnply 40570 |
Copyright terms: Public domain | W3C validator |