![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > subrgss | Structured version Visualization version GIF version |
Description: A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrgss.1 | β’ π΅ = (Baseβπ ) |
Ref | Expression |
---|---|
subrgss | β’ (π΄ β (SubRingβπ ) β π΄ β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgss.1 | . . . 4 β’ π΅ = (Baseβπ ) | |
2 | eqid 2733 | . . . 4 β’ (1rβπ ) = (1rβπ ) | |
3 | 1, 2 | issubrg 20319 | . . 3 β’ (π΄ β (SubRingβπ ) β ((π β Ring β§ (π βΎs π΄) β Ring) β§ (π΄ β π΅ β§ (1rβπ ) β π΄))) |
4 | 3 | simprbi 498 | . 2 β’ (π΄ β (SubRingβπ ) β (π΄ β π΅ β§ (1rβπ ) β π΄)) |
5 | 4 | simpld 496 | 1 β’ (π΄ β (SubRingβπ ) β π΄ β π΅) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 397 = wceq 1542 β wcel 2107 β wss 3949 βcfv 6544 (class class class)co 7409 Basecbs 17144 βΎs cress 17173 1rcur 20004 Ringcrg 20056 SubRingcsubrg 20315 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-subrg 20317 |
This theorem is referenced by: subrgsubg 20325 subrg1 20329 subrgsubm 20332 subrgdvds 20333 subrguss 20334 subrginv 20335 subrgdv 20336 subrgmre 20344 subsubrg 20345 issubdrg 20401 sdrgss 20409 sdrgacs 20417 subdrgint 20419 abvres 20447 sralmod 20809 cnsubrg 21005 issubassa3 21420 sraassab 21422 sraassa 21423 sraassaOLD 21424 aspid 21429 issubassa2 21446 resspsrbas 21535 resspsradd 21536 resspsrmul 21537 resspsrvsca 21538 mplassa 21581 ressmplbas2 21582 subrgascl 21627 subrgasclcl 21628 mplind 21631 evlsval2 21650 evlssca 21652 evlsscasrng 21660 mpfconst 21664 mpff 21667 mpfaddcl 21668 mpfmulcl 21669 mpfind 21670 ply1assa 21723 evls1val 21839 evls1rhm 21841 evls1sca 21842 evls1scasrng 21858 pf1f 21869 sranlm 24201 clmsscn 24595 cphreccllem 24695 cphdivcl 24699 cphabscl 24702 cphsqrtcl2 24703 cphsqrtcl3 24704 cphipcl 24708 4cphipval2 24759 resscdrg 24875 srabn 24877 plypf1 25726 dvply2g 25798 taylply2 25880 0ringsubrg 32379 fldgenssp 32408 idlinsubrg 32549 evls1fpws 32646 evls1vsca 32650 asclply1subcl 32660 sralvec 32675 drgext0g 32677 drgextvsca 32678 drgext0gsca 32679 drgextsubrg 32680 drgextlsp 32681 drgextgsum 32682 fedgmullem1 32714 fedgmullem2 32715 fedgmul 32716 extdggt0 32736 fldexttr 32737 extdg1id 32742 elirng 32750 irngss 32751 0ringirng 32753 evls1maplmhm 32760 ply1annnr 32764 imacrhmcl 41089 evlsval3 41131 evlsvvval 41135 evlsbagval 41138 evlsevl 41143 evlsmhpvvval 41167 mhphf 41169 mhphf2 41170 mhphf3 41171 cnsrexpcl 41907 fsumcnsrcl 41908 cnsrplycl 41909 rgspnid 41914 rngunsnply 41915 |
Copyright terms: Public domain | W3C validator |