![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sdrgid | Structured version Visualization version GIF version |
Description: Every division ring is a division subring of itself. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
Ref | Expression |
---|---|
sdrgid.1 | β’ π΅ = (Baseβπ ) |
Ref | Expression |
---|---|
sdrgid | β’ (π β DivRing β π΅ β (SubDRingβπ )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 β’ (π β DivRing β π β DivRing) | |
2 | drngring 20508 | . . 3 β’ (π β DivRing β π β Ring) | |
3 | sdrgid.1 | . . . 4 β’ π΅ = (Baseβπ ) | |
4 | 3 | subrgid 20464 | . . 3 β’ (π β Ring β π΅ β (SubRingβπ )) |
5 | 2, 4 | syl 17 | . 2 β’ (π β DivRing β π΅ β (SubRingβπ )) |
6 | 3 | ressid 17194 | . . 3 β’ (π β DivRing β (π βΎs π΅) = π ) |
7 | 6, 1 | eqeltrd 2832 | . 2 β’ (π β DivRing β (π βΎs π΅) β DivRing) |
8 | issdrg 20548 | . 2 β’ (π΅ β (SubDRingβπ ) β (π β DivRing β§ π΅ β (SubRingβπ ) β§ (π βΎs π΅) β DivRing)) | |
9 | 1, 5, 7, 8 | syl3anbrc 1342 | 1 β’ (π β DivRing β π΅ β (SubDRingβπ )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1540 β wcel 2105 βcfv 6543 (class class class)co 7412 Basecbs 17149 βΎs cress 17178 Ringcrg 20128 SubRingcsubrg 20458 DivRingcdr 20501 SubDRingcsdrg 20546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7859 df-2nd 7979 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-er 8706 df-en 8943 df-dom 8944 df-sdom 8945 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-nn 12218 df-2 12280 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-0g 17392 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-mgp 20030 df-ur 20077 df-ring 20130 df-subrg 20460 df-drng 20503 df-sdrg 20547 |
This theorem is referenced by: primefld 20565 primefld0cl 20566 primefld1cl 20567 rndrhmcl 32667 primefldchr 32670 fldgenval 32673 fldgensdrg 32675 fldgenssv 32676 ricdrng1 41407 |
Copyright terms: Public domain | W3C validator |