Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sdrgid | Structured version Visualization version GIF version |
Description: Every division ring is a division subring of itself. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
Ref | Expression |
---|---|
sdrgid.1 | ⊢ 𝐵 = (Base‘𝑅) |
Ref | Expression |
---|---|
sdrgid | ⊢ (𝑅 ∈ DivRing → 𝐵 ∈ (SubDRing‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ DivRing) | |
2 | drngring 19629 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
3 | sdrgid.1 | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
4 | 3 | subrgid 19657 | . . 3 ⊢ (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅)) |
5 | 2, 4 | syl 17 | . 2 ⊢ (𝑅 ∈ DivRing → 𝐵 ∈ (SubRing‘𝑅)) |
6 | 3 | ressid 16663 | . . 3 ⊢ (𝑅 ∈ DivRing → (𝑅 ↾s 𝐵) = 𝑅) |
7 | 6, 1 | eqeltrd 2833 | . 2 ⊢ (𝑅 ∈ DivRing → (𝑅 ↾s 𝐵) ∈ DivRing) |
8 | issdrg 19694 | . 2 ⊢ (𝐵 ∈ (SubDRing‘𝑅) ↔ (𝑅 ∈ DivRing ∧ 𝐵 ∈ (SubRing‘𝑅) ∧ (𝑅 ↾s 𝐵) ∈ DivRing)) | |
9 | 1, 5, 7, 8 | syl3anbrc 1344 | 1 ⊢ (𝑅 ∈ DivRing → 𝐵 ∈ (SubDRing‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2113 ‘cfv 6340 (class class class)co 7171 Basecbs 16587 ↾s cress 16588 Ringcrg 19417 DivRingcdr 19622 SubRingcsubrg 19651 SubDRingcsdrg 19692 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5168 ax-nul 5175 ax-pow 5233 ax-pr 5297 ax-un 7480 ax-cnex 10672 ax-resscn 10673 ax-1cn 10674 ax-icn 10675 ax-addcl 10676 ax-addrcl 10677 ax-mulcl 10678 ax-mulrcl 10679 ax-mulcom 10680 ax-addass 10681 ax-mulass 10682 ax-distr 10683 ax-i2m1 10684 ax-1ne0 10685 ax-1rid 10686 ax-rnegex 10687 ax-rrecex 10688 ax-cnre 10689 ax-pre-lttri 10690 ax-pre-lttrn 10691 ax-pre-ltadd 10692 ax-pre-mulgt0 10693 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3683 df-csb 3792 df-dif 3847 df-un 3849 df-in 3851 df-ss 3861 df-pss 3863 df-nul 4213 df-if 4416 df-pw 4491 df-sn 4518 df-pr 4520 df-tp 4522 df-op 4524 df-uni 4798 df-iun 4884 df-br 5032 df-opab 5094 df-mpt 5112 df-tr 5138 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5484 df-we 5486 df-xp 5532 df-rel 5533 df-cnv 5534 df-co 5535 df-dm 5536 df-rn 5537 df-res 5538 df-ima 5539 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7128 df-ov 7174 df-oprab 7175 df-mpo 7176 df-om 7601 df-wrecs 7977 df-recs 8038 df-rdg 8076 df-er 8321 df-en 8557 df-dom 8558 df-sdom 8559 df-pnf 10756 df-mnf 10757 df-xr 10758 df-ltxr 10759 df-le 10760 df-sub 10951 df-neg 10952 df-nn 11718 df-2 11780 df-ndx 16590 df-slot 16591 df-base 16593 df-sets 16594 df-ress 16595 df-plusg 16682 df-0g 16819 df-mgm 17969 df-sgrp 18018 df-mnd 18029 df-mgp 19360 df-ur 19372 df-ring 19419 df-drng 19624 df-subrg 19653 df-sdrg 19693 |
This theorem is referenced by: primefld 19704 primefld0cl 19705 primefld1cl 19706 primefldchr 31070 |
Copyright terms: Public domain | W3C validator |