| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl12 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl12 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
| 2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pythagtriplem4 16837 pmatcollpw1lem1 22710 pmatcollpw1 22712 mp2pm2mplem2 22743 nolt02o 27657 nogt01o 27658 brbtwn2 28830 ax5seg 28863 3vfriswmgr 30205 br8 35719 ifscgr 36008 seglecgr12im 36074 lkrshp 39069 atlatle 39284 cvlcvr1 39303 atbtwn 39411 3dimlem3 39426 3dimlem3OLDN 39427 1cvratex 39438 llnmlplnN 39504 4atlem3 39561 4atlem3a 39562 4atlem11 39574 4atlem12 39577 cdlemb 39759 paddasslem4 39788 paddasslem10 39794 pmodlem1 39811 llnexchb2lem 39833 arglem1N 40155 cdlemd4 40166 cdlemd 40172 cdleme16 40250 cdleme20 40289 cdleme21k 40303 cdleme22cN 40307 cdleme27N 40334 cdleme28c 40337 cdleme29ex 40339 cdleme32fva 40402 cdleme40n 40433 cdlemg15a 40620 cdlemg15 40621 cdlemg16ALTN 40623 cdlemg16z 40624 cdlemg20 40650 cdlemg22 40652 cdlemg29 40670 cdlemg38 40680 cdlemk33N 40874 cdlemk56 40936 fourierdlem77 46160 |
| Copyright terms: Public domain | W3C validator |