MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simpl12 Structured version   Visualization version   GIF version

Theorem simpl12 1250
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.)
Assertion
Ref Expression
simpl12 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂) → 𝜓)

Proof of Theorem simpl12
StepHypRef Expression
1 simpl2 1193 . 2 (((𝜑𝜓𝜒) ∧ 𝜂) → 𝜓)
213ad2antl1 1186 1 ((((𝜑𝜓𝜒) ∧ 𝜃𝜏) ∧ 𝜂) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  pythagtriplem4  16749  pmatcollpw1lem1  22677  pmatcollpw1  22679  mp2pm2mplem2  22710  nolt02o  27623  nogt01o  27624  brbtwn2  28868  ax5seg  28901  3vfriswmgr  30240  br8  35728  ifscgr  36017  seglecgr12im  36083  lkrshp  39083  atlatle  39298  cvlcvr1  39317  atbtwn  39425  3dimlem3  39440  3dimlem3OLDN  39441  1cvratex  39452  llnmlplnN  39518  4atlem3  39575  4atlem3a  39576  4atlem11  39588  4atlem12  39591  cdlemb  39773  paddasslem4  39802  paddasslem10  39808  pmodlem1  39825  llnexchb2lem  39847  arglem1N  40169  cdlemd4  40180  cdlemd  40186  cdleme16  40264  cdleme20  40303  cdleme21k  40317  cdleme22cN  40321  cdleme27N  40348  cdleme28c  40351  cdleme29ex  40353  cdleme32fva  40416  cdleme40n  40447  cdlemg15a  40634  cdlemg15  40635  cdlemg16ALTN  40637  cdlemg16z  40638  cdlemg20  40664  cdlemg22  40666  cdlemg29  40684  cdlemg38  40694  cdlemk33N  40888  cdlemk56  40950  fourierdlem77  46165
  Copyright terms: Public domain W3C validator