| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl12 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl12 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
| 2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pythagtriplem4 16733 pmatcollpw1lem1 22690 pmatcollpw1 22692 mp2pm2mplem2 22723 nolt02o 27635 nogt01o 27636 brbtwn2 28885 ax5seg 28918 3vfriswmgr 30260 br8 35821 ifscgr 36109 seglecgr12im 36175 lkrshp 39224 atlatle 39439 cvlcvr1 39458 atbtwn 39565 3dimlem3 39580 3dimlem3OLDN 39581 1cvratex 39592 llnmlplnN 39658 4atlem3 39715 4atlem3a 39716 4atlem11 39728 4atlem12 39731 cdlemb 39913 paddasslem4 39942 paddasslem10 39948 pmodlem1 39965 llnexchb2lem 39987 arglem1N 40309 cdlemd4 40320 cdlemd 40326 cdleme16 40404 cdleme20 40443 cdleme21k 40457 cdleme22cN 40461 cdleme27N 40488 cdleme28c 40491 cdleme29ex 40493 cdleme32fva 40556 cdleme40n 40587 cdlemg15a 40774 cdlemg15 40775 cdlemg16ALTN 40777 cdlemg16z 40778 cdlemg20 40804 cdlemg22 40806 cdlemg29 40824 cdlemg38 40834 cdlemk33N 41028 cdlemk56 41090 fourierdlem77 46305 |
| Copyright terms: Public domain | W3C validator |