| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl12 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl12 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
| 2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pythagtriplem4 16728 pmatcollpw1lem1 22687 pmatcollpw1 22689 mp2pm2mplem2 22720 nolt02o 27632 nogt01o 27633 brbtwn2 28881 ax5seg 28914 3vfriswmgr 30253 br8 35788 ifscgr 36077 seglecgr12im 36143 lkrshp 39143 atlatle 39358 cvlcvr1 39377 atbtwn 39484 3dimlem3 39499 3dimlem3OLDN 39500 1cvratex 39511 llnmlplnN 39577 4atlem3 39634 4atlem3a 39635 4atlem11 39647 4atlem12 39650 cdlemb 39832 paddasslem4 39861 paddasslem10 39867 pmodlem1 39884 llnexchb2lem 39906 arglem1N 40228 cdlemd4 40239 cdlemd 40245 cdleme16 40323 cdleme20 40362 cdleme21k 40376 cdleme22cN 40380 cdleme27N 40407 cdleme28c 40410 cdleme29ex 40412 cdleme32fva 40475 cdleme40n 40506 cdlemg15a 40693 cdlemg15 40694 cdlemg16ALTN 40696 cdlemg16z 40697 cdlemg20 40723 cdlemg22 40725 cdlemg29 40743 cdlemg38 40753 cdlemk33N 40947 cdlemk56 41009 fourierdlem77 46220 |
| Copyright terms: Public domain | W3C validator |