![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl12 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl12 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1190 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
2 | 1 | 3ad2antl1 1183 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1087 |
This theorem is referenced by: pythagtriplem4 16756 pmatcollpw1lem1 22496 pmatcollpw1 22498 mp2pm2mplem2 22529 nolt02o 27434 nogt01o 27435 brbtwn2 28430 ax5seg 28463 3vfriswmgr 29798 br8 35030 ifscgr 35320 seglecgr12im 35386 lkrshp 38278 atlatle 38493 cvlcvr1 38512 atbtwn 38620 3dimlem3 38635 3dimlem3OLDN 38636 1cvratex 38647 llnmlplnN 38713 4atlem3 38770 4atlem3a 38771 4atlem11 38783 4atlem12 38786 cdlemb 38968 paddasslem4 38997 paddasslem10 39003 pmodlem1 39020 llnexchb2lem 39042 arglem1N 39364 cdlemd4 39375 cdlemd 39381 cdleme16 39459 cdleme20 39498 cdleme21k 39512 cdleme22cN 39516 cdleme27N 39543 cdleme28c 39546 cdleme29ex 39548 cdleme32fva 39611 cdleme40n 39642 cdlemg15a 39829 cdlemg15 39830 cdlemg16ALTN 39832 cdlemg16z 39833 cdlemg20 39859 cdlemg22 39861 cdlemg29 39879 cdlemg38 39889 cdlemk33N 40083 cdlemk56 40145 fourierdlem77 45197 |
Copyright terms: Public domain | W3C validator |