![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl12 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl12 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1190 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
2 | 1 | 3ad2antl1 1183 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: pythagtriplem4 16782 pmatcollpw1lem1 22670 pmatcollpw1 22672 mp2pm2mplem2 22703 nolt02o 27622 nogt01o 27623 brbtwn2 28710 ax5seg 28743 3vfriswmgr 30082 br8 35345 ifscgr 35635 seglecgr12im 35701 lkrshp 38572 atlatle 38787 cvlcvr1 38806 atbtwn 38914 3dimlem3 38929 3dimlem3OLDN 38930 1cvratex 38941 llnmlplnN 39007 4atlem3 39064 4atlem3a 39065 4atlem11 39077 4atlem12 39080 cdlemb 39262 paddasslem4 39291 paddasslem10 39297 pmodlem1 39314 llnexchb2lem 39336 arglem1N 39658 cdlemd4 39669 cdlemd 39675 cdleme16 39753 cdleme20 39792 cdleme21k 39806 cdleme22cN 39810 cdleme27N 39837 cdleme28c 39840 cdleme29ex 39842 cdleme32fva 39905 cdleme40n 39936 cdlemg15a 40123 cdlemg15 40124 cdlemg16ALTN 40126 cdlemg16z 40127 cdlemg20 40153 cdlemg22 40155 cdlemg29 40173 cdlemg38 40183 cdlemk33N 40377 cdlemk56 40439 fourierdlem77 45562 |
Copyright terms: Public domain | W3C validator |