Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpl12 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl12 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1190 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
2 | 1 | 3ad2antl1 1183 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: pythagtriplem4 16448 pmatcollpw1lem1 21831 pmatcollpw1 21833 mp2pm2mplem2 21864 brbtwn2 27176 ax5seg 27209 3vfriswmgr 28543 br8 33629 poxp3 33723 nolt02o 33825 nogt01o 33826 ifscgr 34273 seglecgr12im 34339 lkrshp 37046 atlatle 37261 cvlcvr1 37280 atbtwn 37387 3dimlem3 37402 3dimlem3OLDN 37403 1cvratex 37414 llnmlplnN 37480 4atlem3 37537 4atlem3a 37538 4atlem11 37550 4atlem12 37553 cdlemb 37735 paddasslem4 37764 paddasslem10 37770 pmodlem1 37787 llnexchb2lem 37809 arglem1N 38131 cdlemd4 38142 cdlemd 38148 cdleme16 38226 cdleme20 38265 cdleme21k 38279 cdleme22cN 38283 cdleme27N 38310 cdleme28c 38313 cdleme29ex 38315 cdleme32fva 38378 cdleme40n 38409 cdlemg15a 38596 cdlemg15 38597 cdlemg16ALTN 38599 cdlemg16z 38600 cdlemg20 38626 cdlemg22 38628 cdlemg29 38646 cdlemg38 38656 cdlemk33N 38850 cdlemk56 38912 fourierdlem77 43614 |
Copyright terms: Public domain | W3C validator |