| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl12 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl12 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
| 2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pythagtriplem4 16839 pmatcollpw1lem1 22712 pmatcollpw1 22714 mp2pm2mplem2 22745 nolt02o 27659 nogt01o 27660 brbtwn2 28884 ax5seg 28917 3vfriswmgr 30259 br8 35773 ifscgr 36062 seglecgr12im 36128 lkrshp 39123 atlatle 39338 cvlcvr1 39357 atbtwn 39465 3dimlem3 39480 3dimlem3OLDN 39481 1cvratex 39492 llnmlplnN 39558 4atlem3 39615 4atlem3a 39616 4atlem11 39628 4atlem12 39631 cdlemb 39813 paddasslem4 39842 paddasslem10 39848 pmodlem1 39865 llnexchb2lem 39887 arglem1N 40209 cdlemd4 40220 cdlemd 40226 cdleme16 40304 cdleme20 40343 cdleme21k 40357 cdleme22cN 40361 cdleme27N 40388 cdleme28c 40391 cdleme29ex 40393 cdleme32fva 40456 cdleme40n 40487 cdlemg15a 40674 cdlemg15 40675 cdlemg16ALTN 40677 cdlemg16z 40678 cdlemg20 40704 cdlemg22 40706 cdlemg29 40724 cdlemg38 40734 cdlemk33N 40928 cdlemk56 40990 fourierdlem77 46212 |
| Copyright terms: Public domain | W3C validator |