| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl12 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl12 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
| 2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pythagtriplem4 16797 pmatcollpw1lem1 22668 pmatcollpw1 22670 mp2pm2mplem2 22701 nolt02o 27614 nogt01o 27615 brbtwn2 28839 ax5seg 28872 3vfriswmgr 30214 br8 35750 ifscgr 36039 seglecgr12im 36105 lkrshp 39105 atlatle 39320 cvlcvr1 39339 atbtwn 39447 3dimlem3 39462 3dimlem3OLDN 39463 1cvratex 39474 llnmlplnN 39540 4atlem3 39597 4atlem3a 39598 4atlem11 39610 4atlem12 39613 cdlemb 39795 paddasslem4 39824 paddasslem10 39830 pmodlem1 39847 llnexchb2lem 39869 arglem1N 40191 cdlemd4 40202 cdlemd 40208 cdleme16 40286 cdleme20 40325 cdleme21k 40339 cdleme22cN 40343 cdleme27N 40370 cdleme28c 40373 cdleme29ex 40375 cdleme32fva 40438 cdleme40n 40469 cdlemg15a 40656 cdlemg15 40657 cdlemg16ALTN 40659 cdlemg16z 40660 cdlemg20 40686 cdlemg22 40688 cdlemg29 40706 cdlemg38 40716 cdlemk33N 40910 cdlemk56 40972 fourierdlem77 46188 |
| Copyright terms: Public domain | W3C validator |