Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpl12 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl12 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1191 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
2 | 1 | 3ad2antl1 1184 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: pythagtriplem4 16594 pmatcollpw1lem1 22003 pmatcollpw1 22005 mp2pm2mplem2 22036 brbtwn2 27406 ax5seg 27439 3vfriswmgr 28774 br8 33853 poxp3 33922 nolt02o 33968 nogt01o 33969 ifscgr 34416 seglecgr12im 34482 lkrshp 37344 atlatle 37559 cvlcvr1 37578 atbtwn 37686 3dimlem3 37701 3dimlem3OLDN 37702 1cvratex 37713 llnmlplnN 37779 4atlem3 37836 4atlem3a 37837 4atlem11 37849 4atlem12 37852 cdlemb 38034 paddasslem4 38063 paddasslem10 38069 pmodlem1 38086 llnexchb2lem 38108 arglem1N 38430 cdlemd4 38441 cdlemd 38447 cdleme16 38525 cdleme20 38564 cdleme21k 38578 cdleme22cN 38582 cdleme27N 38609 cdleme28c 38612 cdleme29ex 38614 cdleme32fva 38677 cdleme40n 38708 cdlemg15a 38895 cdlemg15 38896 cdlemg16ALTN 38898 cdlemg16z 38899 cdlemg20 38925 cdlemg22 38927 cdlemg29 38945 cdlemg38 38955 cdlemk33N 39149 cdlemk56 39211 fourierdlem77 43979 |
Copyright terms: Public domain | W3C validator |