Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpl12 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl12 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1191 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
2 | 1 | 3ad2antl1 1184 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: pythagtriplem4 16520 pmatcollpw1lem1 21923 pmatcollpw1 21925 mp2pm2mplem2 21956 brbtwn2 27273 ax5seg 27306 3vfriswmgr 28642 br8 33723 poxp3 33796 nolt02o 33898 nogt01o 33899 ifscgr 34346 seglecgr12im 34412 lkrshp 37119 atlatle 37334 cvlcvr1 37353 atbtwn 37460 3dimlem3 37475 3dimlem3OLDN 37476 1cvratex 37487 llnmlplnN 37553 4atlem3 37610 4atlem3a 37611 4atlem11 37623 4atlem12 37626 cdlemb 37808 paddasslem4 37837 paddasslem10 37843 pmodlem1 37860 llnexchb2lem 37882 arglem1N 38204 cdlemd4 38215 cdlemd 38221 cdleme16 38299 cdleme20 38338 cdleme21k 38352 cdleme22cN 38356 cdleme27N 38383 cdleme28c 38386 cdleme29ex 38388 cdleme32fva 38451 cdleme40n 38482 cdlemg15a 38669 cdlemg15 38670 cdlemg16ALTN 38672 cdlemg16z 38673 cdlemg20 38699 cdlemg22 38701 cdlemg29 38719 cdlemg38 38729 cdlemk33N 38923 cdlemk56 38985 fourierdlem77 43724 |
Copyright terms: Public domain | W3C validator |