| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl12 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl12 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
| 2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pythagtriplem4 16749 pmatcollpw1lem1 22677 pmatcollpw1 22679 mp2pm2mplem2 22710 nolt02o 27623 nogt01o 27624 brbtwn2 28868 ax5seg 28901 3vfriswmgr 30240 br8 35728 ifscgr 36017 seglecgr12im 36083 lkrshp 39083 atlatle 39298 cvlcvr1 39317 atbtwn 39425 3dimlem3 39440 3dimlem3OLDN 39441 1cvratex 39452 llnmlplnN 39518 4atlem3 39575 4atlem3a 39576 4atlem11 39588 4atlem12 39591 cdlemb 39773 paddasslem4 39802 paddasslem10 39808 pmodlem1 39825 llnexchb2lem 39847 arglem1N 40169 cdlemd4 40180 cdlemd 40186 cdleme16 40264 cdleme20 40303 cdleme21k 40317 cdleme22cN 40321 cdleme27N 40348 cdleme28c 40351 cdleme29ex 40353 cdleme32fva 40416 cdleme40n 40447 cdlemg15a 40634 cdlemg15 40635 cdlemg16ALTN 40637 cdlemg16z 40638 cdlemg20 40664 cdlemg22 40666 cdlemg29 40684 cdlemg38 40694 cdlemk33N 40888 cdlemk56 40950 fourierdlem77 46165 |
| Copyright terms: Public domain | W3C validator |