| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl12 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl12 | ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜓) | |
| 2 | 1 | 3ad2antl1 1186 | 1 ⊢ ((((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜃 ∧ 𝜏) ∧ 𝜂) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: pythagtriplem4 16790 pmatcollpw1lem1 22661 pmatcollpw1 22663 mp2pm2mplem2 22694 nolt02o 27607 nogt01o 27608 brbtwn2 28832 ax5seg 28865 3vfriswmgr 30207 br8 35743 ifscgr 36032 seglecgr12im 36098 lkrshp 39098 atlatle 39313 cvlcvr1 39332 atbtwn 39440 3dimlem3 39455 3dimlem3OLDN 39456 1cvratex 39467 llnmlplnN 39533 4atlem3 39590 4atlem3a 39591 4atlem11 39603 4atlem12 39606 cdlemb 39788 paddasslem4 39817 paddasslem10 39823 pmodlem1 39840 llnexchb2lem 39862 arglem1N 40184 cdlemd4 40195 cdlemd 40201 cdleme16 40279 cdleme20 40318 cdleme21k 40332 cdleme22cN 40336 cdleme27N 40363 cdleme28c 40366 cdleme29ex 40368 cdleme32fva 40431 cdleme40n 40462 cdlemg15a 40649 cdlemg15 40650 cdlemg16ALTN 40652 cdlemg16z 40653 cdlemg20 40679 cdlemg22 40681 cdlemg29 40699 cdlemg38 40709 cdlemk33N 40903 cdlemk56 40965 fourierdlem77 46181 |
| Copyright terms: Public domain | W3C validator |