Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme29ex Structured version   Visualization version   GIF version

Theorem cdleme29ex 39903
Description: Lemma for cdleme29b 39904. (Compare cdleme25a 39882.) TODO: FIX COMMENT. (Contributed by NM, 7-Feb-2013.)
Hypotheses
Ref Expression
cdleme26.b 𝐡 = (Baseβ€˜πΎ)
cdleme26.l ≀ = (leβ€˜πΎ)
cdleme26.j ∨ = (joinβ€˜πΎ)
cdleme26.m ∧ = (meetβ€˜πΎ)
cdleme26.a 𝐴 = (Atomsβ€˜πΎ)
cdleme26.h 𝐻 = (LHypβ€˜πΎ)
cdleme27.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme27.f 𝐹 = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)))
cdleme27.z 𝑍 = ((𝑧 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)))
cdleme27.n 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑠 ∨ 𝑧) ∧ π‘Š)))
cdleme27.d 𝐷 = (℩𝑒 ∈ 𝐡 βˆ€π‘§ ∈ 𝐴 ((Β¬ 𝑧 ≀ π‘Š ∧ Β¬ 𝑧 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑒 = 𝑁))
cdleme27.c 𝐢 = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐷, 𝐹)
Assertion
Ref Expression
cdleme29ex ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ βˆƒπ‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋) ∧ (𝐢 ∨ (𝑋 ∧ π‘Š)) ∈ 𝐡))
Distinct variable groups:   𝑒,𝑠,𝑧,𝐴   𝐡,𝑠,𝑒,𝑧   𝑒,𝐹   𝐻,𝑠,𝑧   ∨ ,𝑠,𝑒,𝑧   𝐾,𝑠,𝑧   ≀ ,𝑠,𝑒,𝑧   ∧ ,𝑠,𝑒,𝑧   𝑒,𝑁   𝑃,𝑠,𝑒,𝑧   𝑄,𝑠,𝑒,𝑧   π‘ˆ,𝑠,𝑒,𝑧   π‘Š,𝑠,𝑒,𝑧   𝑋,𝑠
Allowed substitution hints:   𝐢(𝑧,𝑒,𝑠)   𝐷(𝑧,𝑒,𝑠)   𝐹(𝑧,𝑠)   𝐻(𝑒)   𝐾(𝑒)   𝑁(𝑧,𝑠)   𝑋(𝑧,𝑒)   𝑍(𝑧,𝑒,𝑠)

Proof of Theorem cdleme29ex
StepHypRef Expression
1 simp11 1200 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simp3 1135 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š))
3 cdleme26.b . . . 4 𝐡 = (Baseβ€˜πΎ)
4 cdleme26.l . . . 4 ≀ = (leβ€˜πΎ)
5 cdleme26.j . . . 4 ∨ = (joinβ€˜πΎ)
6 cdleme26.m . . . 4 ∧ = (meetβ€˜πΎ)
7 cdleme26.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
8 cdleme26.h . . . 4 𝐻 = (LHypβ€˜πΎ)
93, 4, 5, 6, 7, 8lhpmcvr2 39553 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ βˆƒπ‘  ∈ 𝐴 (Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋))
101, 2, 9syl2anc 582 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ βˆƒπ‘  ∈ 𝐴 (Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋))
11 simp11l 1281 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ 𝐾 ∈ HL)
1211adantr 479 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š)) β†’ 𝐾 ∈ HL)
1312hllatd 38892 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š)) β†’ 𝐾 ∈ Lat)
14 simp11r 1282 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ π‘Š ∈ 𝐻)
1514adantr 479 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š)) β†’ π‘Š ∈ 𝐻)
16 simpl12 1246 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
17 simpl13 1247 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š)) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
18 simpr 483 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š)) β†’ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š))
19 simpl2 1189 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š)) β†’ 𝑃 β‰  𝑄)
20 cdleme27.u . . . . . . . . 9 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
21 cdleme27.f . . . . . . . . 9 𝐹 = ((𝑠 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ π‘Š)))
22 cdleme27.z . . . . . . . . 9 𝑍 = ((𝑧 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑧) ∧ π‘Š)))
23 cdleme27.n . . . . . . . . 9 𝑁 = ((𝑃 ∨ 𝑄) ∧ (𝑍 ∨ ((𝑠 ∨ 𝑧) ∧ π‘Š)))
24 cdleme27.d . . . . . . . . 9 𝐷 = (℩𝑒 ∈ 𝐡 βˆ€π‘§ ∈ 𝐴 ((Β¬ 𝑧 ≀ π‘Š ∧ Β¬ 𝑧 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑒 = 𝑁))
25 cdleme27.c . . . . . . . . 9 𝐢 = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐷, 𝐹)
263, 4, 5, 6, 7, 8, 20, 21, 22, 23, 24, 25cdleme27cl 39895 . . . . . . . 8 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ 𝑃 β‰  𝑄)) β†’ 𝐢 ∈ 𝐡)
2712, 15, 16, 17, 18, 19, 26syl222anc 1383 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š)) β†’ 𝐢 ∈ 𝐡)
28 simpl3l 1225 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š)) β†’ 𝑋 ∈ 𝐡)
293, 8lhpbase 39527 . . . . . . . . 9 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ 𝐡)
3015, 29syl 17 . . . . . . . 8 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š)) β†’ π‘Š ∈ 𝐡)
313, 6latmcl 18431 . . . . . . . 8 ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐡 ∧ π‘Š ∈ 𝐡) β†’ (𝑋 ∧ π‘Š) ∈ 𝐡)
3213, 28, 30, 31syl3anc 1368 . . . . . . 7 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š)) β†’ (𝑋 ∧ π‘Š) ∈ 𝐡)
333, 5latjcl 18430 . . . . . . 7 ((𝐾 ∈ Lat ∧ 𝐢 ∈ 𝐡 ∧ (𝑋 ∧ π‘Š) ∈ 𝐡) β†’ (𝐢 ∨ (𝑋 ∧ π‘Š)) ∈ 𝐡)
3413, 27, 32, 33syl3anc 1368 . . . . . 6 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š)) β†’ (𝐢 ∨ (𝑋 ∧ π‘Š)) ∈ 𝐡)
3534expr 455 . . . . 5 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ 𝑠 ∈ 𝐴) β†’ (Β¬ 𝑠 ≀ π‘Š β†’ (𝐢 ∨ (𝑋 ∧ π‘Š)) ∈ 𝐡))
3635adantrd 490 . . . 4 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ 𝑠 ∈ 𝐴) β†’ ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ (𝐢 ∨ (𝑋 ∧ π‘Š)) ∈ 𝐡))
3736ancld 549 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) ∧ 𝑠 ∈ 𝐴) β†’ ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋) ∧ (𝐢 ∨ (𝑋 ∧ π‘Š)) ∈ 𝐡)))
3837reximdva 3158 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ (βˆƒπ‘  ∈ 𝐴 (Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋) β†’ βˆƒπ‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋) ∧ (𝐢 ∨ (𝑋 ∧ π‘Š)) ∈ 𝐡)))
3910, 38mpd 15 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ 𝑃 β‰  𝑄 ∧ (𝑋 ∈ 𝐡 ∧ Β¬ 𝑋 ≀ π‘Š)) β†’ βˆƒπ‘  ∈ 𝐴 ((Β¬ 𝑠 ≀ π‘Š ∧ (𝑠 ∨ (𝑋 ∧ π‘Š)) = 𝑋) ∧ (𝐢 ∨ (𝑋 ∧ π‘Š)) ∈ 𝐡))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  βˆƒwrex 3060  ifcif 4524   class class class wbr 5143  β€˜cfv 6543  β„©crio 7371  (class class class)co 7416  Basecbs 17179  lecple 17239  joincjn 18302  meetcmee 18303  Latclat 18422  Atomscatm 38791  HLchlt 38878  LHypclh 39513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-mpo 7421  df-1st 7991  df-2nd 7992  df-proset 18286  df-poset 18304  df-plt 18321  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-p0 18416  df-p1 18417  df-lat 18423  df-clat 18490  df-oposet 38704  df-ol 38706  df-oml 38707  df-covers 38794  df-ats 38795  df-atl 38826  df-cvlat 38850  df-hlat 38879  df-llines 39027  df-lplanes 39028  df-lvols 39029  df-lines 39030  df-psubsp 39032  df-pmap 39033  df-padd 39325  df-lhyp 39517
This theorem is referenced by:  cdleme29b  39904
  Copyright terms: Public domain W3C validator