Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mp2pm2mplem2 | Structured version Visualization version GIF version |
Description: Lemma 2 for mp2pm2mp 21525. (Contributed by AV, 10-Oct-2019.) (Revised by AV, 5-Dec-2019.) |
Ref | Expression |
---|---|
mp2pm2mp.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
mp2pm2mp.q | ⊢ 𝑄 = (Poly1‘𝐴) |
mp2pm2mp.l | ⊢ 𝐿 = (Base‘𝑄) |
mp2pm2mp.m | ⊢ · = ( ·𝑠 ‘𝑃) |
mp2pm2mp.e | ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) |
mp2pm2mp.y | ⊢ 𝑌 = (var1‘𝑅) |
mp2pm2mp.i | ⊢ 𝐼 = (𝑝 ∈ 𝐿 ↦ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌)))))) |
mp2pm2mplem2.p | ⊢ 𝑃 = (Poly1‘𝑅) |
mp2pm2mplem2.c | ⊢ 𝐶 = (𝑁 Mat 𝑃) |
mp2pm2mplem2.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
mp2pm2mplem2 | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp2pm2mplem2.c | . 2 ⊢ 𝐶 = (𝑁 Mat 𝑃) | |
2 | eqid 2758 | . 2 ⊢ (Base‘𝑃) = (Base‘𝑃) | |
3 | mp2pm2mplem2.b | . 2 ⊢ 𝐵 = (Base‘𝐶) | |
4 | simp1 1133 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → 𝑁 ∈ Fin) | |
5 | mp2pm2mplem2.p | . . . 4 ⊢ 𝑃 = (Poly1‘𝑅) | |
6 | 5 | ply1ring 20986 | . . 3 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
7 | 6 | 3ad2ant2 1131 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → 𝑃 ∈ Ring) |
8 | eqid 2758 | . . 3 ⊢ (0g‘𝑃) = (0g‘𝑃) | |
9 | ringcmn 19416 | . . . . . 6 ⊢ (𝑃 ∈ Ring → 𝑃 ∈ CMnd) | |
10 | 6, 9 | syl 17 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑃 ∈ CMnd) |
11 | 10 | 3ad2ant2 1131 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → 𝑃 ∈ CMnd) |
12 | 11 | 3ad2ant1 1130 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑃 ∈ CMnd) |
13 | nn0ex 11953 | . . . 4 ⊢ ℕ0 ∈ V | |
14 | 13 | a1i 11 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ℕ0 ∈ V) |
15 | simpl12 1246 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑅 ∈ Ring) | |
16 | mp2pm2mp.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
17 | eqid 2758 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
18 | eqid 2758 | . . . . . 6 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
19 | simpl2 1189 | . . . . . 6 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑖 ∈ 𝑁) | |
20 | simpl3 1190 | . . . . . 6 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑗 ∈ 𝑁) | |
21 | simp13 1202 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑂 ∈ 𝐿) | |
22 | eqid 2758 | . . . . . . . 8 ⊢ (coe1‘𝑂) = (coe1‘𝑂) | |
23 | mp2pm2mp.l | . . . . . . . 8 ⊢ 𝐿 = (Base‘𝑄) | |
24 | mp2pm2mp.q | . . . . . . . 8 ⊢ 𝑄 = (Poly1‘𝐴) | |
25 | 22, 23, 24, 18 | coe1fvalcl 20950 | . . . . . . 7 ⊢ ((𝑂 ∈ 𝐿 ∧ 𝑘 ∈ ℕ0) → ((coe1‘𝑂)‘𝑘) ∈ (Base‘𝐴)) |
26 | 21, 25 | sylan 583 | . . . . . 6 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) → ((coe1‘𝑂)‘𝑘) ∈ (Base‘𝐴)) |
27 | 16, 17, 18, 19, 20, 26 | matecld 21140 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) → (𝑖((coe1‘𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅)) |
28 | simpr 488 | . . . . 5 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0) | |
29 | mp2pm2mp.y | . . . . . 6 ⊢ 𝑌 = (var1‘𝑅) | |
30 | mp2pm2mp.m | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑃) | |
31 | eqid 2758 | . . . . . 6 ⊢ (mulGrp‘𝑃) = (mulGrp‘𝑃) | |
32 | mp2pm2mp.e | . . . . . 6 ⊢ 𝐸 = (.g‘(mulGrp‘𝑃)) | |
33 | 17, 5, 29, 30, 31, 32, 2 | ply1tmcl 21010 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑖((coe1‘𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅) ∧ 𝑘 ∈ ℕ0) → ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃)) |
34 | 15, 27, 28, 33 | syl3anc 1368 | . . . 4 ⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑘 ∈ ℕ0) → ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃)) |
35 | 34 | fmpttd 6876 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))):ℕ0⟶(Base‘𝑃)) |
36 | 16, 24, 23, 5, 30, 32, 29 | mply1topmatcllem 21517 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) finSupp (0g‘𝑃)) |
37 | 2, 8, 12, 14, 35, 36 | gsumcl 19117 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) ∈ (Base‘𝑃)) |
38 | 1, 2, 3, 4, 7, 37 | matbas2d 21137 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂 ∈ 𝐿) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1‘𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ↦ cmpt 5116 ‘cfv 6340 (class class class)co 7156 ∈ cmpo 7158 Fincfn 8540 ℕ0cn0 11947 Basecbs 16555 ·𝑠 cvsca 16641 0gc0g 16785 Σg cgsu 16786 .gcmg 18305 CMndccmn 18987 mulGrpcmgp 19321 Ringcrg 19379 var1cv1 20914 Poly1cpl1 20915 coe1cco1 20916 Mat cmat 21121 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-resscn 10645 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-mulcom 10652 ax-addass 10653 ax-mulass 10654 ax-distr 10655 ax-i2m1 10656 ax-1ne0 10657 ax-1rid 10658 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 ax-pre-lttri 10662 ax-pre-lttrn 10663 ax-pre-ltadd 10664 ax-pre-mulgt0 10665 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-ot 4534 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-se 5488 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-isom 6349 df-riota 7114 df-ov 7159 df-oprab 7160 df-mpo 7161 df-of 7411 df-ofr 7412 df-om 7586 df-1st 7699 df-2nd 7700 df-supp 7842 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-1o 8118 df-er 8305 df-map 8424 df-pm 8425 df-ixp 8493 df-en 8541 df-dom 8542 df-sdom 8543 df-fin 8544 df-fsupp 8880 df-sup 8952 df-oi 9020 df-card 9414 df-pnf 10728 df-mnf 10729 df-xr 10730 df-ltxr 10731 df-le 10732 df-sub 10923 df-neg 10924 df-nn 11688 df-2 11750 df-3 11751 df-4 11752 df-5 11753 df-6 11754 df-7 11755 df-8 11756 df-9 11757 df-n0 11948 df-z 12034 df-dec 12151 df-uz 12296 df-fz 12953 df-fzo 13096 df-seq 13432 df-hash 13754 df-struct 16557 df-ndx 16558 df-slot 16559 df-base 16561 df-sets 16562 df-ress 16563 df-plusg 16650 df-mulr 16651 df-sca 16653 df-vsca 16654 df-ip 16655 df-tset 16656 df-ple 16657 df-ds 16659 df-hom 16661 df-cco 16662 df-0g 16787 df-gsum 16788 df-prds 16793 df-pws 16795 df-mre 16929 df-mrc 16930 df-acs 16932 df-mgm 17932 df-sgrp 17981 df-mnd 17992 df-mhm 18036 df-submnd 18037 df-grp 18186 df-minusg 18187 df-sbg 18188 df-mulg 18306 df-subg 18357 df-ghm 18437 df-cntz 18528 df-cmn 18989 df-abl 18990 df-mgp 19322 df-ur 19334 df-ring 19381 df-subrg 19615 df-lmod 19718 df-lss 19786 df-sra 20026 df-rgmod 20027 df-dsmm 20511 df-frlm 20526 df-psr 20685 df-mvr 20686 df-mpl 20687 df-opsr 20689 df-psr1 20918 df-vr1 20919 df-ply1 20920 df-coe1 20921 df-mat 21122 |
This theorem is referenced by: mp2pm2mplem3 21522 |
Copyright terms: Public domain | W3C validator |