Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg15 Structured version   Visualization version   GIF version

Theorem cdlemg15 40169
Description: Eliminate the ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) condition from cdlemg13 40165. TODO: FIX COMMENT. (Contributed by NM, 25-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l ≀ = (leβ€˜πΎ)
cdlemg12.j ∨ = (joinβ€˜πΎ)
cdlemg12.m ∧ = (meetβ€˜πΎ)
cdlemg12.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg12.h 𝐻 = (LHypβ€˜πΎ)
cdlemg12.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemg12b.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdlemg15 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) β†’ ((𝑃 ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ π‘Š) = ((𝑄 ∨ (πΉβ€˜(πΊβ€˜π‘„))) ∧ π‘Š))

Proof of Theorem cdlemg15
StepHypRef Expression
1 simpl11 1245 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) ∧ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) = (𝑃 ∨ 𝑄)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
2 simpl12 1246 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) ∧ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) = (𝑃 ∨ 𝑄)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
3 simpl13 1247 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) ∧ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) = (𝑃 ∨ 𝑄)) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
4 simpl2l 1223 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) ∧ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) = (𝑃 ∨ 𝑄)) β†’ 𝐹 ∈ 𝑇)
5 simpl2r 1224 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) ∧ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) = (𝑃 ∨ 𝑄)) β†’ 𝐺 ∈ 𝑇)
6 simpr 483 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) ∧ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) = (𝑃 ∨ 𝑄)) β†’ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) = (𝑃 ∨ 𝑄))
7 cdlemg12.l . . . 4 ≀ = (leβ€˜πΎ)
8 cdlemg12.j . . . 4 ∨ = (joinβ€˜πΎ)
9 cdlemg12.m . . . 4 ∧ = (meetβ€˜πΎ)
10 cdlemg12.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
11 cdlemg12.h . . . 4 𝐻 = (LHypβ€˜πΎ)
12 cdlemg12.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
137, 8, 9, 10, 11, 12cdlemg8 40144 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) = (𝑃 ∨ 𝑄))) β†’ ((𝑃 ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ π‘Š) = ((𝑄 ∨ (πΉβ€˜(πΊβ€˜π‘„))) ∧ π‘Š))
141, 2, 3, 4, 5, 6, 13syl132anc 1385 . 2 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) ∧ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) = (𝑃 ∨ 𝑄)) β†’ ((𝑃 ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ π‘Š) = ((𝑄 ∨ (πΉβ€˜(πΊβ€˜π‘„))) ∧ π‘Š))
15 simpl1 1188 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) ∧ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄)) β†’ ((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)))
16 simpl2 1189 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) ∧ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄)) β†’ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇))
17 simpl3 1190 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) ∧ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄)) β†’ (π‘…β€˜πΉ) = (π‘…β€˜πΊ))
18 simpr 483 . . 3 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) ∧ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄)) β†’ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄))
19 cdlemg12b.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
207, 8, 9, 10, 11, 12, 19cdlemg15a 40168 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜πΊ) ∧ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄))) β†’ ((𝑃 ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ π‘Š) = ((𝑄 ∨ (πΉβ€˜(πΊβ€˜π‘„))) ∧ π‘Š))
2115, 16, 17, 18, 20syl112anc 1371 . 2 (((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) ∧ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄)) β†’ ((𝑃 ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ π‘Š) = ((𝑄 ∨ (πΉβ€˜(πΊβ€˜π‘„))) ∧ π‘Š))
2214, 21pm2.61dane 3026 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) β†’ ((𝑃 ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ π‘Š) = ((𝑄 ∨ (πΉβ€˜(πΊβ€˜π‘„))) ∧ π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2937   class class class wbr 5152  β€˜cfv 6553  (class class class)co 7426  lecple 17249  joincjn 18312  meetcmee 18313  Atomscatm 38775  HLchlt 38862  LHypclh 39497  LTrncltrn 39614  trLctrl 39671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748  ax-riotaBAD 38465
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-iin 5003  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 8001  df-2nd 8002  df-undef 8287  df-map 8855  df-proset 18296  df-poset 18314  df-plt 18331  df-lub 18347  df-glb 18348  df-join 18349  df-meet 18350  df-p0 18426  df-p1 18427  df-lat 18433  df-clat 18500  df-oposet 38688  df-ol 38690  df-oml 38691  df-covers 38778  df-ats 38779  df-atl 38810  df-cvlat 38834  df-hlat 38863  df-llines 39011  df-lplanes 39012  df-lvols 39013  df-lines 39014  df-psubsp 39016  df-pmap 39017  df-padd 39309  df-lhyp 39501  df-laut 39502  df-ldil 39617  df-ltrn 39618  df-trl 39672
This theorem is referenced by:  cdlemg16  40170  cdlemg39  40229
  Copyright terms: Public domain W3C validator