Proof of Theorem cdlemg15
| Step | Hyp | Ref
| Expression |
| 1 | | simpl11 1249 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 2 | | simpl12 1250 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄)) → (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊)) |
| 3 | | simpl13 1251 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
| 4 | | simpl2l 1227 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄)) → 𝐹 ∈ 𝑇) |
| 5 | | simpl2r 1228 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄)) → 𝐺 ∈ 𝑇) |
| 6 | | simpr 484 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄)) → ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄)) |
| 7 | | cdlemg12.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
| 8 | | cdlemg12.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 9 | | cdlemg12.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
| 10 | | cdlemg12.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
| 11 | | cdlemg12.h |
. . . 4
⊢ 𝐻 = (LHyp‘𝐾) |
| 12 | | cdlemg12.t |
. . . 4
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 13 | 7, 8, 9, 10, 11, 12 | cdlemg8 40655 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ ((𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝐹 ∈ 𝑇) ∧ (𝐺 ∈ 𝑇 ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |
| 14 | 1, 2, 3, 4, 5, 6, 13 | syl132anc 1390 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) = (𝑃 ∨ 𝑄)) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |
| 15 | | simpl1 1192 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄)) → ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊))) |
| 16 | | simpl2 1193 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄)) → (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) |
| 17 | | simpl3 1194 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄)) → (𝑅‘𝐹) = (𝑅‘𝐺)) |
| 18 | | simpr 484 |
. . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄)) → ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄)) |
| 19 | | cdlemg12b.r |
. . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
| 20 | 7, 8, 9, 10, 11, 12, 19 | cdlemg15a 40679 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((𝑅‘𝐹) = (𝑅‘𝐺) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄))) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |
| 21 | 15, 16, 17, 18, 20 | syl112anc 1376 |
. 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) ∧ ((𝐹‘(𝐺‘𝑃)) ∨ (𝐹‘(𝐺‘𝑄))) ≠ (𝑃 ∨ 𝑄)) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |
| 22 | 14, 21 | pm2.61dane 3020 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ (𝑅‘𝐹) = (𝑅‘𝐺)) → ((𝑃 ∨ (𝐹‘(𝐺‘𝑃))) ∧ 𝑊) = ((𝑄 ∨ (𝐹‘(𝐺‘𝑄))) ∧ 𝑊)) |