Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvratex Structured version   Visualization version   GIF version

Theorem 1cvratex 36090
Description: There exists an atom less than an element covered by 1. (Contributed by NM, 7-May-2012.) (Revised by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
1cvratex.b 𝐵 = (Base‘𝐾)
1cvratex.s < = (lt‘𝐾)
1cvratex.u 1 = (1.‘𝐾)
1cvratex.c 𝐶 = ( ⋖ ‘𝐾)
1cvratex.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
1cvratex ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ∃𝑝𝐴 𝑝 < 𝑋)
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐾,𝑝   < ,𝑝   1 ,𝑝   𝑋,𝑝

Proof of Theorem 1cvratex
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1127 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → 𝐾 ∈ HL)
2 1cvratex.b . . . . 5 𝐵 = (Base‘𝐾)
3 1cvratex.u . . . . 5 1 = (1.‘𝐾)
4 eqid 2793 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
5 1cvratex.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
6 1cvratex.a . . . . 5 𝐴 = (Atoms‘𝐾)
72, 3, 4, 5, 61cvrco 36089 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ ((oc‘𝐾)‘𝑋) ∈ 𝐴))
87biimp3a 1459 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ((oc‘𝐾)‘𝑋) ∈ 𝐴)
9 eqid 2793 . . . 4 (join‘𝐾) = (join‘𝐾)
109, 5, 62dim 36087 . . 3 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐴) → ∃𝑞𝐴𝑟𝐴 (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
111, 8, 10syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ∃𝑞𝐴𝑟𝐴 (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
12 simp11 1194 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝐾 ∈ HL)
13 hlop 35979 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
1412, 13syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝐾 ∈ OP)
1512hllatd 35981 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝐾 ∈ Lat)
16 simp12 1195 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑋𝐵)
172, 4opoccl 35811 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
1814, 16, 17syl2anc 584 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
19 simp2l 1190 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑞𝐴)
202, 6atbase 35906 . . . . . . . . 9 (𝑞𝐴𝑞𝐵)
2119, 20syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑞𝐵)
222, 9latjcl 17478 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵𝑞𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵)
2315, 18, 21, 22syl3anc 1362 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵)
242, 4opoccl 35811 . . . . . . 7 ((𝐾 ∈ OP ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵)
2514, 23, 24syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵)
26 simp2r 1191 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑟𝐴)
272, 6atbase 35906 . . . . . . . . . . . . 13 (𝑟𝐴𝑟𝐵)
2826, 27syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑟𝐵)
292, 9latjcl 17478 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵𝑟𝐵) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵)
3015, 23, 28, 29syl3anc 1362 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵)
312, 4opoccl 35811 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∈ 𝐵)
3214, 30, 31syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∈ 𝐵)
33 eqid 2793 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
34 eqid 2793 . . . . . . . . . . 11 (0.‘𝐾) = (0.‘𝐾)
352, 33, 34op0le 35803 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∈ 𝐵) → (0.‘𝐾)(le‘𝐾)((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
3614, 32, 35syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (0.‘𝐾)(le‘𝐾)((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
37 simp3r 1193 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))
38 1cvratex.s . . . . . . . . . . . 12 < = (lt‘𝐾)
392, 38, 5cvrlt 35887 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵 ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) < ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))
4012, 23, 30, 37, 39syl31anc 1364 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) < ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))
412, 38, 4opltcon3b 35821 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵 ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) < ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ↔ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
4214, 23, 30, 41syl3anc 1362 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) < ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ↔ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
4340, 42mpbid 233 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
44 hlpos 35983 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Poset)
4512, 44syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝐾 ∈ Poset)
462, 34op0cl 35801 . . . . . . . . . . 11 (𝐾 ∈ OP → (0.‘𝐾) ∈ 𝐵)
4714, 46syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (0.‘𝐾) ∈ 𝐵)
482, 33, 38plelttr 17399 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ 𝐵 ∧ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∈ 𝐵 ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵)) → (((0.‘𝐾)(le‘𝐾)((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∧ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))) → (0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
4945, 47, 32, 25, 48syl13anc 1363 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((0.‘𝐾)(le‘𝐾)((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∧ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))) → (0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
5036, 43, 49mp2and 695 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
5138pltne 17389 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ 𝐵 ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵) → ((0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → (0.‘𝐾) ≠ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
5212, 47, 25, 51syl3anc 1362 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → (0.‘𝐾) ≠ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
5350, 52mpd 15 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (0.‘𝐾) ≠ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
5453necomd 3037 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ≠ (0.‘𝐾))
552, 33, 34, 6atle 36053 . . . . . 6 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵 ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ≠ (0.‘𝐾)) → ∃𝑝𝐴 𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
5612, 25, 54, 55syl3anc 1362 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ∃𝑝𝐴 𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
57 simp3l 1192 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))
582, 38, 5cvrlt 35887 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵) ∧ ((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → ((oc‘𝐾)‘𝑋) < (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))
5912, 18, 23, 57, 58syl31anc 1364 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘𝑋) < (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))
602, 38, 4opltcon3b 35821 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) < (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ↔ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < ((oc‘𝐾)‘((oc‘𝐾)‘𝑋))))
6114, 18, 23, 60syl3anc 1362 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((oc‘𝐾)‘𝑋) < (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ↔ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < ((oc‘𝐾)‘((oc‘𝐾)‘𝑋))))
6259, 61mpbid 233 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)))
632, 4opococ 35812 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
6414, 16, 63syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
6562, 64breqtrd 4982 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < 𝑋)
6665adantr 481 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < 𝑋)
67 simpl11 1239 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
6867, 44syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → 𝐾 ∈ Poset)
692, 6atbase 35906 . . . . . . . . 9 (𝑝𝐴𝑝𝐵)
7069adantl 482 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → 𝑝𝐵)
7125adantr 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵)
72 simpl12 1240 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → 𝑋𝐵)
732, 33, 38plelttr 17399 . . . . . . . 8 ((𝐾 ∈ Poset ∧ (𝑝𝐵 ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵𝑋𝐵)) → ((𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < 𝑋) → 𝑝 < 𝑋))
7468, 70, 71, 72, 73syl13anc 1363 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → ((𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < 𝑋) → 𝑝 < 𝑋))
7566, 74mpan2d 690 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → (𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → 𝑝 < 𝑋))
7675reximdva 3234 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (∃𝑝𝐴 𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → ∃𝑝𝐴 𝑝 < 𝑋))
7756, 76mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ∃𝑝𝐴 𝑝 < 𝑋)
78773exp 1110 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ((𝑞𝐴𝑟𝐴) → ((((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ∃𝑝𝐴 𝑝 < 𝑋)))
7978rexlimdvv 3253 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → (∃𝑞𝐴𝑟𝐴 (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ∃𝑝𝐴 𝑝 < 𝑋))
8011, 79mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ∃𝑝𝐴 𝑝 < 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1078   = wceq 1520  wcel 2079  wne 2982  wrex 3104   class class class wbr 4956  cfv 6217  (class class class)co 7007  Basecbs 16300  lecple 16389  occoc 16390  Posetcpo 17367  ltcplt 17368  joincjn 17371  0.cp0 17464  1.cp1 17465  Latclat 17472  OPcops 35789  ccvr 35879  Atomscatm 35880  HLchlt 35967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-rep 5075  ax-sep 5088  ax-nul 5095  ax-pow 5150  ax-pr 5214  ax-un 7310
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-reu 3110  df-rab 3112  df-v 3434  df-sbc 3702  df-csb 3807  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-pw 4449  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-iun 4821  df-br 4957  df-opab 5019  df-mpt 5036  df-id 5340  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ima 5448  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-f1 6222  df-fo 6223  df-f1o 6224  df-fv 6225  df-riota 6968  df-ov 7010  df-oprab 7011  df-proset 17355  df-poset 17373  df-plt 17385  df-lub 17401  df-glb 17402  df-join 17403  df-meet 17404  df-p0 17466  df-p1 17467  df-lat 17473  df-clat 17535  df-oposet 35793  df-ol 35795  df-oml 35796  df-covers 35883  df-ats 35884  df-atl 35915  df-cvlat 35939  df-hlat 35968
This theorem is referenced by:  1cvratlt  36091  lhpexlt  36619
  Copyright terms: Public domain W3C validator