Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvratex Structured version   Visualization version   GIF version

Theorem 1cvratex 39430
Description: There exists an atom less than an element covered by 1. (Contributed by NM, 7-May-2012.) (Revised by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
1cvratex.b 𝐵 = (Base‘𝐾)
1cvratex.s < = (lt‘𝐾)
1cvratex.u 1 = (1.‘𝐾)
1cvratex.c 𝐶 = ( ⋖ ‘𝐾)
1cvratex.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
1cvratex ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ∃𝑝𝐴 𝑝 < 𝑋)
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐾,𝑝   < ,𝑝   1 ,𝑝   𝑋,𝑝

Proof of Theorem 1cvratex
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1136 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → 𝐾 ∈ HL)
2 1cvratex.b . . . . 5 𝐵 = (Base‘𝐾)
3 1cvratex.u . . . . 5 1 = (1.‘𝐾)
4 eqid 2740 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
5 1cvratex.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
6 1cvratex.a . . . . 5 𝐴 = (Atoms‘𝐾)
72, 3, 4, 5, 61cvrco 39429 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ ((oc‘𝐾)‘𝑋) ∈ 𝐴))
87biimp3a 1469 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ((oc‘𝐾)‘𝑋) ∈ 𝐴)
9 eqid 2740 . . . 4 (join‘𝐾) = (join‘𝐾)
109, 5, 62dim 39427 . . 3 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐴) → ∃𝑞𝐴𝑟𝐴 (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
111, 8, 10syl2anc 583 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ∃𝑞𝐴𝑟𝐴 (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
12 simp11 1203 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝐾 ∈ HL)
13 hlop 39318 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
1412, 13syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝐾 ∈ OP)
1512hllatd 39320 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝐾 ∈ Lat)
16 simp12 1204 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑋𝐵)
172, 4opoccl 39150 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
1814, 16, 17syl2anc 583 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
19 simp2l 1199 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑞𝐴)
202, 6atbase 39245 . . . . . . . . 9 (𝑞𝐴𝑞𝐵)
2119, 20syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑞𝐵)
222, 9latjcl 18509 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵𝑞𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵)
2315, 18, 21, 22syl3anc 1371 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵)
242, 4opoccl 39150 . . . . . . 7 ((𝐾 ∈ OP ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵)
2514, 23, 24syl2anc 583 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵)
26 simp2r 1200 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑟𝐴)
272, 6atbase 39245 . . . . . . . . . . . . 13 (𝑟𝐴𝑟𝐵)
2826, 27syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑟𝐵)
292, 9latjcl 18509 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵𝑟𝐵) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵)
3015, 23, 28, 29syl3anc 1371 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵)
312, 4opoccl 39150 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∈ 𝐵)
3214, 30, 31syl2anc 583 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∈ 𝐵)
33 eqid 2740 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
34 eqid 2740 . . . . . . . . . . 11 (0.‘𝐾) = (0.‘𝐾)
352, 33, 34op0le 39142 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∈ 𝐵) → (0.‘𝐾)(le‘𝐾)((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
3614, 32, 35syl2anc 583 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (0.‘𝐾)(le‘𝐾)((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
37 simp3r 1202 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))
38 1cvratex.s . . . . . . . . . . . 12 < = (lt‘𝐾)
392, 38, 5cvrlt 39226 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵 ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) < ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))
4012, 23, 30, 37, 39syl31anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) < ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))
412, 38, 4opltcon3b 39160 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵 ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) < ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ↔ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
4214, 23, 30, 41syl3anc 1371 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) < ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ↔ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
4340, 42mpbid 232 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
44 hlpos 39322 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Poset)
4512, 44syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝐾 ∈ Poset)
462, 34op0cl 39140 . . . . . . . . . . 11 (𝐾 ∈ OP → (0.‘𝐾) ∈ 𝐵)
4714, 46syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (0.‘𝐾) ∈ 𝐵)
482, 33, 38plelttr 18414 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ 𝐵 ∧ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∈ 𝐵 ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵)) → (((0.‘𝐾)(le‘𝐾)((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∧ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))) → (0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
4945, 47, 32, 25, 48syl13anc 1372 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((0.‘𝐾)(le‘𝐾)((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∧ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))) → (0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
5036, 43, 49mp2and 698 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
5138pltne 18404 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ 𝐵 ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵) → ((0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → (0.‘𝐾) ≠ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
5212, 47, 25, 51syl3anc 1371 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → (0.‘𝐾) ≠ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
5350, 52mpd 15 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (0.‘𝐾) ≠ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
5453necomd 3002 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ≠ (0.‘𝐾))
552, 33, 34, 6atle 39393 . . . . . 6 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵 ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ≠ (0.‘𝐾)) → ∃𝑝𝐴 𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
5612, 25, 54, 55syl3anc 1371 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ∃𝑝𝐴 𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
57 simp3l 1201 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))
582, 38, 5cvrlt 39226 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵) ∧ ((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → ((oc‘𝐾)‘𝑋) < (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))
5912, 18, 23, 57, 58syl31anc 1373 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘𝑋) < (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))
602, 38, 4opltcon3b 39160 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) < (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ↔ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < ((oc‘𝐾)‘((oc‘𝐾)‘𝑋))))
6114, 18, 23, 60syl3anc 1371 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((oc‘𝐾)‘𝑋) < (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ↔ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < ((oc‘𝐾)‘((oc‘𝐾)‘𝑋))))
6259, 61mpbid 232 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)))
632, 4opococ 39151 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
6414, 16, 63syl2anc 583 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
6562, 64breqtrd 5192 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < 𝑋)
6665adantr 480 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < 𝑋)
67 simpl11 1248 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
6867, 44syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → 𝐾 ∈ Poset)
692, 6atbase 39245 . . . . . . . . 9 (𝑝𝐴𝑝𝐵)
7069adantl 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → 𝑝𝐵)
7125adantr 480 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵)
72 simpl12 1249 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → 𝑋𝐵)
732, 33, 38plelttr 18414 . . . . . . . 8 ((𝐾 ∈ Poset ∧ (𝑝𝐵 ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵𝑋𝐵)) → ((𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < 𝑋) → 𝑝 < 𝑋))
7468, 70, 71, 72, 73syl13anc 1372 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → ((𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < 𝑋) → 𝑝 < 𝑋))
7566, 74mpan2d 693 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → (𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → 𝑝 < 𝑋))
7675reximdva 3174 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (∃𝑝𝐴 𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → ∃𝑝𝐴 𝑝 < 𝑋))
7756, 76mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ∃𝑝𝐴 𝑝 < 𝑋)
78773exp 1119 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ((𝑞𝐴𝑟𝐴) → ((((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ∃𝑝𝐴 𝑝 < 𝑋)))
7978rexlimdvv 3218 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → (∃𝑞𝐴𝑟𝐴 (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ∃𝑝𝐴 𝑝 < 𝑋))
8011, 79mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ∃𝑝𝐴 𝑝 < 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wrex 3076   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  occoc 17319  Posetcpo 18377  ltcplt 18378  joincjn 18381  0.cp0 18493  1.cp1 18494  Latclat 18501  OPcops 39128  ccvr 39218  Atomscatm 39219  HLchlt 39306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-p1 18496  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307
This theorem is referenced by:  1cvratlt  39431  lhpexlt  39959
  Copyright terms: Public domain W3C validator