Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  1cvratex Structured version   Visualization version   GIF version

Theorem 1cvratex 37487
Description: There exists an atom less than an element covered by 1. (Contributed by NM, 7-May-2012.) (Revised by Mario Carneiro, 13-Jun-2014.)
Hypotheses
Ref Expression
1cvratex.b 𝐵 = (Base‘𝐾)
1cvratex.s < = (lt‘𝐾)
1cvratex.u 1 = (1.‘𝐾)
1cvratex.c 𝐶 = ( ⋖ ‘𝐾)
1cvratex.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
1cvratex ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ∃𝑝𝐴 𝑝 < 𝑋)
Distinct variable groups:   𝐴,𝑝   𝐵,𝑝   𝐶,𝑝   𝐾,𝑝   < ,𝑝   1 ,𝑝   𝑋,𝑝

Proof of Theorem 1cvratex
Dummy variables 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 1135 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → 𝐾 ∈ HL)
2 1cvratex.b . . . . 5 𝐵 = (Base‘𝐾)
3 1cvratex.u . . . . 5 1 = (1.‘𝐾)
4 eqid 2738 . . . . 5 (oc‘𝐾) = (oc‘𝐾)
5 1cvratex.c . . . . 5 𝐶 = ( ⋖ ‘𝐾)
6 1cvratex.a . . . . 5 𝐴 = (Atoms‘𝐾)
72, 3, 4, 5, 61cvrco 37486 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝐵) → (𝑋𝐶 1 ↔ ((oc‘𝐾)‘𝑋) ∈ 𝐴))
87biimp3a 1468 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ((oc‘𝐾)‘𝑋) ∈ 𝐴)
9 eqid 2738 . . . 4 (join‘𝐾) = (join‘𝐾)
109, 5, 62dim 37484 . . 3 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐴) → ∃𝑞𝐴𝑟𝐴 (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
111, 8, 10syl2anc 584 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ∃𝑞𝐴𝑟𝐴 (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
12 simp11 1202 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝐾 ∈ HL)
13 hlop 37376 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ OP)
1412, 13syl 17 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝐾 ∈ OP)
1512hllatd 37378 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝐾 ∈ Lat)
16 simp12 1203 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑋𝐵)
172, 4opoccl 37208 . . . . . . . . 9 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
1814, 16, 17syl2anc 584 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘𝑋) ∈ 𝐵)
19 simp2l 1198 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑞𝐴)
202, 6atbase 37303 . . . . . . . . 9 (𝑞𝐴𝑞𝐵)
2119, 20syl 17 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑞𝐵)
222, 9latjcl 18157 . . . . . . . 8 ((𝐾 ∈ Lat ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵𝑞𝐵) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵)
2315, 18, 21, 22syl3anc 1370 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵)
242, 4opoccl 37208 . . . . . . 7 ((𝐾 ∈ OP ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵)
2514, 23, 24syl2anc 584 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵)
26 simp2r 1199 . . . . . . . . . . . . 13 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑟𝐴)
272, 6atbase 37303 . . . . . . . . . . . . 13 (𝑟𝐴𝑟𝐵)
2826, 27syl 17 . . . . . . . . . . . 12 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝑟𝐵)
292, 9latjcl 18157 . . . . . . . . . . . 12 ((𝐾 ∈ Lat ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵𝑟𝐵) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵)
3015, 23, 28, 29syl3anc 1370 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵)
312, 4opoccl 37208 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∈ 𝐵)
3214, 30, 31syl2anc 584 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∈ 𝐵)
33 eqid 2738 . . . . . . . . . . 11 (le‘𝐾) = (le‘𝐾)
34 eqid 2738 . . . . . . . . . . 11 (0.‘𝐾) = (0.‘𝐾)
352, 33, 34op0le 37200 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∈ 𝐵) → (0.‘𝐾)(le‘𝐾)((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
3614, 32, 35syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (0.‘𝐾)(le‘𝐾)((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)))
37 simp3r 1201 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))
38 1cvratex.s . . . . . . . . . . . 12 < = (lt‘𝐾)
392, 38, 5cvrlt 37284 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵 ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) < ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))
4012, 23, 30, 37, 39syl31anc 1372 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) < ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))
412, 38, 4opltcon3b 37218 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵 ∧ ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ∈ 𝐵) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) < ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ↔ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
4214, 23, 30, 41syl3anc 1370 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) < ((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟) ↔ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
4340, 42mpbid 231 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
44 hlpos 37380 . . . . . . . . . . 11 (𝐾 ∈ HL → 𝐾 ∈ Poset)
4512, 44syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → 𝐾 ∈ Poset)
462, 34op0cl 37198 . . . . . . . . . . 11 (𝐾 ∈ OP → (0.‘𝐾) ∈ 𝐵)
4714, 46syl 17 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (0.‘𝐾) ∈ 𝐵)
482, 33, 38plelttr 18062 . . . . . . . . . 10 ((𝐾 ∈ Poset ∧ ((0.‘𝐾) ∈ 𝐵 ∧ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∈ 𝐵 ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵)) → (((0.‘𝐾)(le‘𝐾)((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∧ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))) → (0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
4945, 47, 32, 25, 48syl13anc 1371 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((0.‘𝐾)(le‘𝐾)((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) ∧ ((oc‘𝐾)‘((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))) → (0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
5036, 43, 49mp2and 696 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
5138pltne 18052 . . . . . . . . 9 ((𝐾 ∈ HL ∧ (0.‘𝐾) ∈ 𝐵 ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵) → ((0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → (0.‘𝐾) ≠ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
5212, 47, 25, 51syl3anc 1370 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((0.‘𝐾) < ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → (0.‘𝐾) ≠ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))))
5350, 52mpd 15 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (0.‘𝐾) ≠ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
5453necomd 2999 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ≠ (0.‘𝐾))
552, 33, 34, 6atle 37450 . . . . . 6 ((𝐾 ∈ HL ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵 ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ≠ (0.‘𝐾)) → ∃𝑝𝐴 𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
5612, 25, 54, 55syl3anc 1370 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ∃𝑝𝐴 𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)))
57 simp3l 1200 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))
582, 38, 5cvrlt 37284 . . . . . . . . . . 11 (((𝐾 ∈ HL ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵) ∧ ((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → ((oc‘𝐾)‘𝑋) < (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))
5912, 18, 23, 57, 58syl31anc 1372 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘𝑋) < (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞))
602, 38, 4opltcon3b 37218 . . . . . . . . . . 11 ((𝐾 ∈ OP ∧ ((oc‘𝐾)‘𝑋) ∈ 𝐵 ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∈ 𝐵) → (((oc‘𝐾)‘𝑋) < (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ↔ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < ((oc‘𝐾)‘((oc‘𝐾)‘𝑋))))
6114, 18, 23, 60syl3anc 1370 . . . . . . . . . 10 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (((oc‘𝐾)‘𝑋) < (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ↔ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < ((oc‘𝐾)‘((oc‘𝐾)‘𝑋))))
6259, 61mpbid 231 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)))
632, 4opococ 37209 . . . . . . . . . 10 ((𝐾 ∈ OP ∧ 𝑋𝐵) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
6414, 16, 63syl2anc 584 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘((oc‘𝐾)‘𝑋)) = 𝑋)
6562, 64breqtrd 5100 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < 𝑋)
6665adantr 481 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < 𝑋)
67 simpl11 1247 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → 𝐾 ∈ HL)
6867, 44syl 17 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → 𝐾 ∈ Poset)
692, 6atbase 37303 . . . . . . . . 9 (𝑝𝐴𝑝𝐵)
7069adantl 482 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → 𝑝𝐵)
7125adantr 481 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵)
72 simpl12 1248 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → 𝑋𝐵)
732, 33, 38plelttr 18062 . . . . . . . 8 ((𝐾 ∈ Poset ∧ (𝑝𝐵 ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∈ 𝐵𝑋𝐵)) → ((𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < 𝑋) → 𝑝 < 𝑋))
7468, 70, 71, 72, 73syl13anc 1371 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → ((𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) ∧ ((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) < 𝑋) → 𝑝 < 𝑋))
7566, 74mpan2d 691 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) ∧ 𝑝𝐴) → (𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → 𝑝 < 𝑋))
7675reximdva 3203 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → (∃𝑝𝐴 𝑝(le‘𝐾)((oc‘𝐾)‘(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)) → ∃𝑝𝐴 𝑝 < 𝑋))
7756, 76mpd 15 . . . 4 (((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) ∧ (𝑞𝐴𝑟𝐴) ∧ (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟))) → ∃𝑝𝐴 𝑝 < 𝑋)
78773exp 1118 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ((𝑞𝐴𝑟𝐴) → ((((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ∃𝑝𝐴 𝑝 < 𝑋)))
7978rexlimdvv 3222 . 2 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → (∃𝑞𝐴𝑟𝐴 (((oc‘𝐾)‘𝑋)𝐶(((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞) ∧ (((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)𝐶((((oc‘𝐾)‘𝑋)(join‘𝐾)𝑞)(join‘𝐾)𝑟)) → ∃𝑝𝐴 𝑝 < 𝑋))
8011, 79mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝐵𝑋𝐶 1 ) → ∃𝑝𝐴 𝑝 < 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  occoc 16970  Posetcpo 18025  ltcplt 18026  joincjn 18029  0.cp0 18141  1.cp1 18142  Latclat 18149  OPcops 37186  ccvr 37276  Atomscatm 37277  HLchlt 37364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365
This theorem is referenced by:  1cvratlt  37488  lhpexlt  38016
  Copyright terms: Public domain W3C validator