Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dimlem3 Structured version   Visualization version   GIF version

Theorem 3dimlem3 39460
Description: Lemma for 3dim1 39466. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dimlem3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)))

Proof of Theorem 3dimlem3
StepHypRef Expression
1 simpr1 1195 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑃𝑄)
2 simpr2 1196 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → ¬ 𝑃 (𝑄 𝑅))
3 simpl11 1249 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝐾 ∈ HL)
4 simpl2l 1227 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑅𝐴)
5 simpl12 1250 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑃𝐴)
6 simpl13 1251 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑄𝐴)
7 simpl3l 1229 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑄𝑅)
87necomd 2980 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑅𝑄)
9 3dim0.l . . . . . 6 = (le‘𝐾)
10 3dim0.j . . . . . 6 = (join‘𝐾)
11 3dim0.a . . . . . 6 𝐴 = (Atoms‘𝐾)
129, 10, 11hlatexch2 39395 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑃𝐴𝑄𝐴) ∧ 𝑅𝑄) → (𝑅 (𝑃 𝑄) → 𝑃 (𝑅 𝑄)))
133, 4, 5, 6, 8, 12syl131anc 1385 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → (𝑅 (𝑃 𝑄) → 𝑃 (𝑅 𝑄)))
1410, 11hlatjcom 39366 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) = (𝑅 𝑄))
153, 6, 4, 14syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → (𝑄 𝑅) = (𝑅 𝑄))
1615breq2d 5107 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → (𝑃 (𝑄 𝑅) ↔ 𝑃 (𝑅 𝑄)))
1713, 16sylibrd 259 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → (𝑅 (𝑃 𝑄) → 𝑃 (𝑄 𝑅)))
182, 17mtod 198 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → ¬ 𝑅 (𝑃 𝑄))
19 simpl1 1192 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
20 simpl2 1193 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → (𝑅𝐴𝑆𝐴))
21 simpl3r 1230 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → ¬ 𝑇 ((𝑄 𝑅) 𝑆))
22 simpr3 1197 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑃 ((𝑄 𝑅) 𝑆))
2310, 9, 113dimlem3a 39459 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → ¬ 𝑇 ((𝑃 𝑄) 𝑅))
2419, 20, 21, 2, 22, 23syl113anc 1384 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → ¬ 𝑇 ((𝑃 𝑄) 𝑅))
251, 18, 243jca 1128 1 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5095  cfv 6486  (class class class)co 7353  lecple 17187  joincjn 18236  Atomscatm 39261  HLchlt 39348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-proset 18219  df-poset 18238  df-plt 18253  df-lub 18269  df-glb 18270  df-join 18271  df-meet 18272  df-p0 18348  df-lat 18357  df-covers 39264  df-ats 39265  df-atl 39296  df-cvlat 39320  df-hlat 39349
This theorem is referenced by:  3dim1  39466  3dim2  39467
  Copyright terms: Public domain W3C validator