Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dimlem3 Structured version   Visualization version   GIF version

Theorem 3dimlem3 36483
 Description: Lemma for 3dim1 36489. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
3dim0.j = (join‘𝐾)
3dim0.l = (le‘𝐾)
3dim0.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
3dimlem3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)))

Proof of Theorem 3dimlem3
StepHypRef Expression
1 simpr1 1188 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑃𝑄)
2 simpr2 1189 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → ¬ 𝑃 (𝑄 𝑅))
3 simpl11 1242 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝐾 ∈ HL)
4 simpl2l 1220 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑅𝐴)
5 simpl12 1243 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑃𝐴)
6 simpl13 1244 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑄𝐴)
7 simpl3l 1222 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑄𝑅)
87necomd 3076 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑅𝑄)
9 3dim0.l . . . . . 6 = (le‘𝐾)
10 3dim0.j . . . . . 6 = (join‘𝐾)
11 3dim0.a . . . . . 6 𝐴 = (Atoms‘𝐾)
129, 10, 11hlatexch2 36418 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅𝐴𝑃𝐴𝑄𝐴) ∧ 𝑅𝑄) → (𝑅 (𝑃 𝑄) → 𝑃 (𝑅 𝑄)))
133, 4, 5, 6, 8, 12syl131anc 1377 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → (𝑅 (𝑃 𝑄) → 𝑃 (𝑅 𝑄)))
1410, 11hlatjcom 36390 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄𝐴𝑅𝐴) → (𝑄 𝑅) = (𝑅 𝑄))
153, 6, 4, 14syl3anc 1365 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → (𝑄 𝑅) = (𝑅 𝑄))
1615breq2d 5075 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → (𝑃 (𝑄 𝑅) ↔ 𝑃 (𝑅 𝑄)))
1713, 16sylibrd 260 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → (𝑅 (𝑃 𝑄) → 𝑃 (𝑄 𝑅)))
182, 17mtod 199 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → ¬ 𝑅 (𝑃 𝑄))
19 simpl1 1185 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
20 simpl2 1186 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → (𝑅𝐴𝑆𝐴))
21 simpl3r 1223 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → ¬ 𝑇 ((𝑄 𝑅) 𝑆))
22 simpr3 1190 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → 𝑃 ((𝑄 𝑅) 𝑆))
2310, 9, 113dimlem3a 36482 . . 3 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (¬ 𝑇 ((𝑄 𝑅) 𝑆) ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → ¬ 𝑇 ((𝑃 𝑄) 𝑅))
2419, 20, 21, 2, 22, 23syl113anc 1376 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → ¬ 𝑇 ((𝑃 𝑄) 𝑅))
251, 18, 243jca 1122 1 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑄𝑅 ∧ ¬ 𝑇 ((𝑄 𝑅) 𝑆))) ∧ (𝑃𝑄 ∧ ¬ 𝑃 (𝑄 𝑅) ∧ 𝑃 ((𝑄 𝑅) 𝑆))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑇 ((𝑃 𝑄) 𝑅)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 396   ∧ w3a 1081   = wceq 1530   ∈ wcel 2107   ≠ wne 3021   class class class wbr 5063  ‘cfv 6354  (class class class)co 7150  lecple 16567  joincjn 17549  Atomscatm 36285  HLchlt 36372 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-proset 17533  df-poset 17551  df-plt 17563  df-lub 17579  df-glb 17580  df-join 17581  df-meet 17582  df-p0 17644  df-lat 17651  df-covers 36288  df-ats 36289  df-atl 36320  df-cvlat 36344  df-hlat 36373 This theorem is referenced by:  3dim1  36489  3dim2  36490
 Copyright terms: Public domain W3C validator