Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem3 Structured version   Visualization version   GIF version

Theorem 4atlem3 36892
Description: Lemma for 4at 36909. Break inequality into 4 cases. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atlem3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉))))

Proof of Theorem 4atlem3
StepHypRef Expression
1 simpl11 1245 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ HL)
2 simpl1 1188 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
3 simpl21 1248 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝐴)
4 simpl22 1249 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆𝐴)
5 simpr 488 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
6 4at.l . . . . . 6 = (le‘𝐾)
7 4at.j . . . . . 6 = (join‘𝐾)
8 4at.a . . . . . 6 𝐴 = (Atoms‘𝐾)
9 eqid 2798 . . . . . 6 (LVols‘𝐾) = (LVols‘𝐾)
106, 7, 8, 9lvoli2 36877 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ (LVols‘𝐾))
112, 3, 4, 5, 10syl121anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ (LVols‘𝐾))
12 simpl23 1250 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑇𝐴)
13 simpl3l 1225 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑈𝐴)
14 simpl3r 1226 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑉𝐴)
156, 7, 8, 9lvolnle3at 36878 . . . 4 (((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑅) 𝑆) ∈ (LVols‘𝐾)) ∧ (𝑇𝐴𝑈𝐴𝑉𝐴)) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ((𝑇 𝑈) 𝑉))
161, 11, 12, 13, 14, 15syl23anc 1374 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ((𝑇 𝑈) 𝑉))
171hllatd 36660 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ Lat)
18 eqid 2798 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1918, 7, 8hlatjcl 36663 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
202, 19syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑄) ∈ (Base‘𝐾))
2118, 7, 8hlatjcl 36663 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
221, 3, 4, 21syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅 𝑆) ∈ (Base‘𝐾))
2318, 7, 8hlatjcl 36663 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
241, 12, 13, 23syl3anc 1368 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑇 𝑈) ∈ (Base‘𝐾))
2518, 8atbase 36585 . . . . . . 7 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
2614, 25syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑉 ∈ (Base‘𝐾))
2718, 7latjcl 17653 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑇 𝑈) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → ((𝑇 𝑈) 𝑉) ∈ (Base‘𝐾))
2817, 24, 26, 27syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑇 𝑈) 𝑉) ∈ (Base‘𝐾))
2918, 6, 7latjle12 17664 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ ((𝑇 𝑈) 𝑉) ∈ (Base‘𝐾))) → (((𝑃 𝑄) ((𝑇 𝑈) 𝑉) ∧ (𝑅 𝑆) ((𝑇 𝑈) 𝑉)) ↔ ((𝑃 𝑄) (𝑅 𝑆)) ((𝑇 𝑈) 𝑉)))
3017, 20, 22, 28, 29syl13anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) ((𝑇 𝑈) 𝑉) ∧ (𝑅 𝑆) ((𝑇 𝑈) 𝑉)) ↔ ((𝑃 𝑄) (𝑅 𝑆)) ((𝑇 𝑈) 𝑉)))
31 simpl12 1246 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝐴)
3218, 8atbase 36585 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3331, 32syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃 ∈ (Base‘𝐾))
34 simpl13 1247 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄𝐴)
3518, 8atbase 36585 . . . . . . 7 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3634, 35syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄 ∈ (Base‘𝐾))
3718, 6, 7latjle12 17664 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑇 𝑈) 𝑉) ∈ (Base‘𝐾))) → ((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ↔ (𝑃 𝑄) ((𝑇 𝑈) 𝑉)))
3817, 33, 36, 28, 37syl13anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ↔ (𝑃 𝑄) ((𝑇 𝑈) 𝑉)))
3918, 8atbase 36585 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
403, 39syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅 ∈ (Base‘𝐾))
4118, 8atbase 36585 . . . . . . 7 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
424, 41syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ∈ (Base‘𝐾))
4318, 6, 7latjle12 17664 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑇 𝑈) 𝑉) ∈ (Base‘𝐾))) → ((𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉)) ↔ (𝑅 𝑆) ((𝑇 𝑈) 𝑉)))
4417, 40, 42, 28, 43syl13anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉)) ↔ (𝑅 𝑆) ((𝑇 𝑈) 𝑉)))
4538, 44anbi12d 633 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∧ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))) ↔ ((𝑃 𝑄) ((𝑇 𝑈) 𝑉) ∧ (𝑅 𝑆) ((𝑇 𝑈) 𝑉))))
4618, 7latjass 17697 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) (𝑅 𝑆)))
4717, 20, 40, 42, 46syl13anc 1369 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) (𝑅 𝑆)))
4847breq1d 5040 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((((𝑃 𝑄) 𝑅) 𝑆) ((𝑇 𝑈) 𝑉) ↔ ((𝑃 𝑄) (𝑅 𝑆)) ((𝑇 𝑈) 𝑉)))
4930, 45, 483bitr4d 314 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∧ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))) ↔ (((𝑃 𝑄) 𝑅) 𝑆) ((𝑇 𝑈) 𝑉)))
5016, 49mtbird 328 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ ((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∧ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))))
51 ianor 979 . . 3 (¬ ((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∧ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))) ↔ (¬ (𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ ¬ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))))
52 ianor 979 . . . 4 (¬ (𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ↔ (¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)))
53 ianor 979 . . . 4 (¬ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉)) ↔ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉)))
5452, 53orbi12i 912 . . 3 ((¬ (𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ ¬ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))) ↔ ((¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉))))
5551, 54bitri 278 . 2 (¬ ((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∧ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))) ↔ ((¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉))))
5650, 55sylib 221 1 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  joincjn 17546  Latclat 17647  Atomscatm 36559  HLchlt 36646  LVolsclvol 36789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-llines 36794  df-lplanes 36795  df-lvols 36796
This theorem is referenced by:  4atlem3a  36893  4atlem12  36908
  Copyright terms: Public domain W3C validator