Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem3 Structured version   Visualization version   GIF version

Theorem 4atlem3 39553
Description: Lemma for 4at 39570. Break inequality into 4 cases. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atlem3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉))))

Proof of Theorem 4atlem3
StepHypRef Expression
1 simpl11 1248 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ HL)
2 simpl1 1191 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
3 simpl21 1251 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝐴)
4 simpl22 1252 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆𝐴)
5 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
6 4at.l . . . . . 6 = (le‘𝐾)
7 4at.j . . . . . 6 = (join‘𝐾)
8 4at.a . . . . . 6 𝐴 = (Atoms‘𝐾)
9 eqid 2740 . . . . . 6 (LVols‘𝐾) = (LVols‘𝐾)
106, 7, 8, 9lvoli2 39538 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ (LVols‘𝐾))
112, 3, 4, 5, 10syl121anc 1375 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ (LVols‘𝐾))
12 simpl23 1253 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑇𝐴)
13 simpl3l 1228 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑈𝐴)
14 simpl3r 1229 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑉𝐴)
156, 7, 8, 9lvolnle3at 39539 . . . 4 (((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑅) 𝑆) ∈ (LVols‘𝐾)) ∧ (𝑇𝐴𝑈𝐴𝑉𝐴)) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ((𝑇 𝑈) 𝑉))
161, 11, 12, 13, 14, 15syl23anc 1377 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ((𝑇 𝑈) 𝑉))
171hllatd 39320 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ Lat)
18 eqid 2740 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1918, 7, 8hlatjcl 39323 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
202, 19syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑄) ∈ (Base‘𝐾))
2118, 7, 8hlatjcl 39323 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
221, 3, 4, 21syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅 𝑆) ∈ (Base‘𝐾))
2318, 7, 8hlatjcl 39323 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
241, 12, 13, 23syl3anc 1371 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑇 𝑈) ∈ (Base‘𝐾))
2518, 8atbase 39245 . . . . . . 7 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
2614, 25syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑉 ∈ (Base‘𝐾))
2718, 7latjcl 18509 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑇 𝑈) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → ((𝑇 𝑈) 𝑉) ∈ (Base‘𝐾))
2817, 24, 26, 27syl3anc 1371 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑇 𝑈) 𝑉) ∈ (Base‘𝐾))
2918, 6, 7latjle12 18520 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ ((𝑇 𝑈) 𝑉) ∈ (Base‘𝐾))) → (((𝑃 𝑄) ((𝑇 𝑈) 𝑉) ∧ (𝑅 𝑆) ((𝑇 𝑈) 𝑉)) ↔ ((𝑃 𝑄) (𝑅 𝑆)) ((𝑇 𝑈) 𝑉)))
3017, 20, 22, 28, 29syl13anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) ((𝑇 𝑈) 𝑉) ∧ (𝑅 𝑆) ((𝑇 𝑈) 𝑉)) ↔ ((𝑃 𝑄) (𝑅 𝑆)) ((𝑇 𝑈) 𝑉)))
31 simpl12 1249 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝐴)
3218, 8atbase 39245 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3331, 32syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃 ∈ (Base‘𝐾))
34 simpl13 1250 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄𝐴)
3518, 8atbase 39245 . . . . . . 7 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3634, 35syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄 ∈ (Base‘𝐾))
3718, 6, 7latjle12 18520 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑇 𝑈) 𝑉) ∈ (Base‘𝐾))) → ((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ↔ (𝑃 𝑄) ((𝑇 𝑈) 𝑉)))
3817, 33, 36, 28, 37syl13anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ↔ (𝑃 𝑄) ((𝑇 𝑈) 𝑉)))
3918, 8atbase 39245 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
403, 39syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅 ∈ (Base‘𝐾))
4118, 8atbase 39245 . . . . . . 7 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
424, 41syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ∈ (Base‘𝐾))
4318, 6, 7latjle12 18520 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑇 𝑈) 𝑉) ∈ (Base‘𝐾))) → ((𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉)) ↔ (𝑅 𝑆) ((𝑇 𝑈) 𝑉)))
4417, 40, 42, 28, 43syl13anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉)) ↔ (𝑅 𝑆) ((𝑇 𝑈) 𝑉)))
4538, 44anbi12d 631 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∧ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))) ↔ ((𝑃 𝑄) ((𝑇 𝑈) 𝑉) ∧ (𝑅 𝑆) ((𝑇 𝑈) 𝑉))))
4618, 7latjass 18553 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) (𝑅 𝑆)))
4717, 20, 40, 42, 46syl13anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) (𝑅 𝑆)))
4847breq1d 5176 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((((𝑃 𝑄) 𝑅) 𝑆) ((𝑇 𝑈) 𝑉) ↔ ((𝑃 𝑄) (𝑅 𝑆)) ((𝑇 𝑈) 𝑉)))
4930, 45, 483bitr4d 311 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∧ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))) ↔ (((𝑃 𝑄) 𝑅) 𝑆) ((𝑇 𝑈) 𝑉)))
5016, 49mtbird 325 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ ((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∧ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))))
51 ianor 982 . . 3 (¬ ((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∧ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))) ↔ (¬ (𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ ¬ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))))
52 ianor 982 . . . 4 (¬ (𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ↔ (¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)))
53 ianor 982 . . . 4 (¬ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉)) ↔ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉)))
5452, 53orbi12i 913 . . 3 ((¬ (𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ ¬ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))) ↔ ((¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉))))
5551, 54bitri 275 . 2 (¬ ((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∧ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))) ↔ ((¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉))))
5650, 55sylib 218 1 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  w3a 1087   = wceq 1537  wcel 2108  wne 2946   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  lecple 17318  joincjn 18381  Latclat 18501  Atomscatm 39219  HLchlt 39306  LVolsclvol 39450
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-proset 18365  df-poset 18383  df-plt 18400  df-lub 18416  df-glb 18417  df-join 18418  df-meet 18419  df-p0 18495  df-lat 18502  df-clat 18569  df-oposet 39132  df-ol 39134  df-oml 39135  df-covers 39222  df-ats 39223  df-atl 39254  df-cvlat 39278  df-hlat 39307  df-llines 39455  df-lplanes 39456  df-lvols 39457
This theorem is referenced by:  4atlem3a  39554  4atlem12  39569
  Copyright terms: Public domain W3C validator