Proof of Theorem 4atlem3
Step | Hyp | Ref
| Expression |
1 | | simpl11 1246 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝐾 ∈ HL) |
2 | | simpl1 1189 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) |
3 | | simpl21 1249 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑅 ∈ 𝐴) |
4 | | simpl22 1250 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑆 ∈ 𝐴) |
5 | | simpr 484 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) |
6 | | 4at.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
7 | | 4at.j |
. . . . . 6
⊢ ∨ =
(join‘𝐾) |
8 | | 4at.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
9 | | eqid 2738 |
. . . . . 6
⊢
(LVols‘𝐾) =
(LVols‘𝐾) |
10 | 6, 7, 8, 9 | lvoli2 37522 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ (LVols‘𝐾)) |
11 | 2, 3, 4, 5, 10 | syl121anc 1373 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ (LVols‘𝐾)) |
12 | | simpl23 1251 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑇 ∈ 𝐴) |
13 | | simpl3l 1226 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑈 ∈ 𝐴) |
14 | | simpl3r 1227 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑉 ∈ 𝐴) |
15 | 6, 7, 8, 9 | lvolnle3at 37523 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ∈ (LVols‘𝐾)) ∧ (𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) → ¬ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)) |
16 | 1, 11, 12, 13, 14, 15 | syl23anc 1375 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ¬ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)) |
17 | 1 | hllatd 37305 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝐾 ∈ Lat) |
18 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) |
19 | 18, 7, 8 | hlatjcl 37308 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
20 | 2, 19 | syl 17 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑃 ∨ 𝑄) ∈ (Base‘𝐾)) |
21 | 18, 7, 8 | hlatjcl 37308 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
22 | 1, 3, 4, 21 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑅 ∨ 𝑆) ∈ (Base‘𝐾)) |
23 | 18, 7, 8 | hlatjcl 37308 |
. . . . . . 7
⊢ ((𝐾 ∈ HL ∧ 𝑇 ∈ 𝐴 ∧ 𝑈 ∈ 𝐴) → (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) |
24 | 1, 12, 13, 23 | syl3anc 1369 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (𝑇 ∨ 𝑈) ∈ (Base‘𝐾)) |
25 | 18, 8 | atbase 37230 |
. . . . . . 7
⊢ (𝑉 ∈ 𝐴 → 𝑉 ∈ (Base‘𝐾)) |
26 | 14, 25 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑉 ∈ (Base‘𝐾)) |
27 | 18, 7 | latjcl 18072 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑇 ∨ 𝑈) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → ((𝑇 ∨ 𝑈) ∨ 𝑉) ∈ (Base‘𝐾)) |
28 | 17, 24, 26, 27 | syl3anc 1369 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑇 ∨ 𝑈) ∨ 𝑉) ∈ (Base‘𝐾)) |
29 | 18, 6, 7 | latjle12 18083 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ (𝑅 ∨ 𝑆) ∈ (Base‘𝐾) ∧ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∈ (Base‘𝐾))) → (((𝑃 ∨ 𝑄) ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ (𝑅 ∨ 𝑆) ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)) ↔ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉))) |
30 | 17, 20, 22, 28, 29 | syl13anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (((𝑃 ∨ 𝑄) ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ (𝑅 ∨ 𝑆) ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)) ↔ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉))) |
31 | | simpl12 1247 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑃 ∈ 𝐴) |
32 | 18, 8 | atbase 37230 |
. . . . . . 7
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) |
33 | 31, 32 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑃 ∈ (Base‘𝐾)) |
34 | | simpl13 1248 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑄 ∈ 𝐴) |
35 | 18, 8 | atbase 37230 |
. . . . . . 7
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) |
36 | 34, 35 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑄 ∈ (Base‘𝐾)) |
37 | 18, 6, 7 | latjle12 18083 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∈ (Base‘𝐾))) → ((𝑃 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ 𝑄 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)) ↔ (𝑃 ∨ 𝑄) ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉))) |
38 | 17, 33, 36, 28, 37 | syl13anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑃 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ 𝑄 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)) ↔ (𝑃 ∨ 𝑄) ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉))) |
39 | 18, 8 | atbase 37230 |
. . . . . . 7
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) |
40 | 3, 39 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑅 ∈ (Base‘𝐾)) |
41 | 18, 8 | atbase 37230 |
. . . . . . 7
⊢ (𝑆 ∈ 𝐴 → 𝑆 ∈ (Base‘𝐾)) |
42 | 4, 41 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → 𝑆 ∈ (Base‘𝐾)) |
43 | 18, 6, 7 | latjle12 18083 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∈ (Base‘𝐾))) → ((𝑅 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ 𝑆 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)) ↔ (𝑅 ∨ 𝑆) ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉))) |
44 | 17, 40, 42, 28, 43 | syl13anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((𝑅 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ 𝑆 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)) ↔ (𝑅 ∨ 𝑆) ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉))) |
45 | 38, 44 | anbi12d 630 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (((𝑃 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ 𝑄 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)) ∧ (𝑅 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ 𝑆 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉))) ↔ ((𝑃 ∨ 𝑄) ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ (𝑅 ∨ 𝑆) ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)))) |
46 | 18, 7 | latjass 18116 |
. . . . . 6
⊢ ((𝐾 ∈ Lat ∧ ((𝑃 ∨ 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) = ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆))) |
47 | 17, 20, 40, 42, 46 | syl13anc 1370 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) = ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆))) |
48 | 47 | breq1d 5080 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ↔ ((𝑃 ∨ 𝑄) ∨ (𝑅 ∨ 𝑆)) ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉))) |
49 | 30, 45, 48 | 3bitr4d 310 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → (((𝑃 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ 𝑄 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)) ∧ (𝑅 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ 𝑆 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉))) ↔ (((𝑃 ∨ 𝑄) ∨ 𝑅) ∨ 𝑆) ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉))) |
50 | 16, 49 | mtbird 324 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ¬ ((𝑃 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ 𝑄 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)) ∧ (𝑅 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ 𝑆 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)))) |
51 | | ianor 978 |
. . 3
⊢ (¬
((𝑃 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ 𝑄 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)) ∧ (𝑅 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ 𝑆 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉))) ↔ (¬ (𝑃 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ 𝑄 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)) ∨ ¬ (𝑅 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ 𝑆 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)))) |
52 | | ianor 978 |
. . . 4
⊢ (¬
(𝑃 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ 𝑄 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)) ↔ (¬ 𝑃 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑄 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉))) |
53 | | ianor 978 |
. . . 4
⊢ (¬
(𝑅 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ 𝑆 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)) ↔ (¬ 𝑅 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉))) |
54 | 52, 53 | orbi12i 911 |
. . 3
⊢ ((¬
(𝑃 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ 𝑄 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)) ∨ ¬ (𝑅 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ 𝑆 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉))) ↔ ((¬ 𝑃 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑄 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)) ∨ (¬ 𝑅 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)))) |
55 | 51, 54 | bitri 274 |
. 2
⊢ (¬
((𝑃 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ 𝑄 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)) ∧ (𝑅 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∧ 𝑆 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉))) ↔ ((¬ 𝑃 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑄 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)) ∨ (¬ 𝑅 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)))) |
56 | 50, 55 | sylib 217 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ 𝑇 ∈ 𝐴) ∧ (𝑈 ∈ 𝐴 ∧ 𝑉 ∈ 𝐴)) ∧ (𝑃 ≠ 𝑄 ∧ ¬ 𝑅 ≤ (𝑃 ∨ 𝑄) ∧ ¬ 𝑆 ≤ ((𝑃 ∨ 𝑄) ∨ 𝑅))) → ((¬ 𝑃 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑄 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)) ∨ (¬ 𝑅 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉) ∨ ¬ 𝑆 ≤ ((𝑇 ∨ 𝑈) ∨ 𝑉)))) |