Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  4atlem3 Structured version   Visualization version   GIF version

Theorem 4atlem3 39705
Description: Lemma for 4at 39722. Break inequality into 4 cases. (Contributed by NM, 8-Jul-2012.)
Hypotheses
Ref Expression
4at.l = (le‘𝐾)
4at.j = (join‘𝐾)
4at.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
4atlem3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉))))

Proof of Theorem 4atlem3
StepHypRef Expression
1 simpl11 1249 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ HL)
2 simpl1 1192 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴))
3 simpl21 1252 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅𝐴)
4 simpl22 1253 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆𝐴)
5 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅)))
6 4at.l . . . . . 6 = (le‘𝐾)
7 4at.j . . . . . 6 = (join‘𝐾)
8 4at.a . . . . . 6 𝐴 = (Atoms‘𝐾)
9 eqid 2731 . . . . . 6 (LVols‘𝐾) = (LVols‘𝐾)
106, 7, 8, 9lvoli2 39690 . . . . 5 (((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ (LVols‘𝐾))
112, 3, 4, 5, 10syl121anc 1377 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) ∈ (LVols‘𝐾))
12 simpl23 1254 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑇𝐴)
13 simpl3l 1229 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑈𝐴)
14 simpl3r 1230 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑉𝐴)
156, 7, 8, 9lvolnle3at 39691 . . . 4 (((𝐾 ∈ HL ∧ (((𝑃 𝑄) 𝑅) 𝑆) ∈ (LVols‘𝐾)) ∧ (𝑇𝐴𝑈𝐴𝑉𝐴)) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ((𝑇 𝑈) 𝑉))
161, 11, 12, 13, 14, 15syl23anc 1379 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ (((𝑃 𝑄) 𝑅) 𝑆) ((𝑇 𝑈) 𝑉))
171hllatd 39473 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝐾 ∈ Lat)
18 eqid 2731 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
1918, 7, 8hlatjcl 39476 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ (Base‘𝐾))
202, 19syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑃 𝑄) ∈ (Base‘𝐾))
2118, 7, 8hlatjcl 39476 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑅𝐴𝑆𝐴) → (𝑅 𝑆) ∈ (Base‘𝐾))
221, 3, 4, 21syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑅 𝑆) ∈ (Base‘𝐾))
2318, 7, 8hlatjcl 39476 . . . . . . 7 ((𝐾 ∈ HL ∧ 𝑇𝐴𝑈𝐴) → (𝑇 𝑈) ∈ (Base‘𝐾))
241, 12, 13, 23syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (𝑇 𝑈) ∈ (Base‘𝐾))
2518, 8atbase 39398 . . . . . . 7 (𝑉𝐴𝑉 ∈ (Base‘𝐾))
2614, 25syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑉 ∈ (Base‘𝐾))
2718, 7latjcl 18345 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑇 𝑈) ∈ (Base‘𝐾) ∧ 𝑉 ∈ (Base‘𝐾)) → ((𝑇 𝑈) 𝑉) ∈ (Base‘𝐾))
2817, 24, 26, 27syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑇 𝑈) 𝑉) ∈ (Base‘𝐾))
2918, 6, 7latjle12 18356 . . . . 5 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ (𝑅 𝑆) ∈ (Base‘𝐾) ∧ ((𝑇 𝑈) 𝑉) ∈ (Base‘𝐾))) → (((𝑃 𝑄) ((𝑇 𝑈) 𝑉) ∧ (𝑅 𝑆) ((𝑇 𝑈) 𝑉)) ↔ ((𝑃 𝑄) (𝑅 𝑆)) ((𝑇 𝑈) 𝑉)))
3017, 20, 22, 28, 29syl13anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) ((𝑇 𝑈) 𝑉) ∧ (𝑅 𝑆) ((𝑇 𝑈) 𝑉)) ↔ ((𝑃 𝑄) (𝑅 𝑆)) ((𝑇 𝑈) 𝑉)))
31 simpl12 1250 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃𝐴)
3218, 8atbase 39398 . . . . . . 7 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
3331, 32syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑃 ∈ (Base‘𝐾))
34 simpl13 1251 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄𝐴)
3518, 8atbase 39398 . . . . . . 7 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
3634, 35syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑄 ∈ (Base‘𝐾))
3718, 6, 7latjle12 18356 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑄 ∈ (Base‘𝐾) ∧ ((𝑇 𝑈) 𝑉) ∈ (Base‘𝐾))) → ((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ↔ (𝑃 𝑄) ((𝑇 𝑈) 𝑉)))
3817, 33, 36, 28, 37syl13anc 1374 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ↔ (𝑃 𝑄) ((𝑇 𝑈) 𝑉)))
3918, 8atbase 39398 . . . . . . 7 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
403, 39syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑅 ∈ (Base‘𝐾))
4118, 8atbase 39398 . . . . . . 7 (𝑆𝐴𝑆 ∈ (Base‘𝐾))
424, 41syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → 𝑆 ∈ (Base‘𝐾))
4318, 6, 7latjle12 18356 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾) ∧ ((𝑇 𝑈) 𝑉) ∈ (Base‘𝐾))) → ((𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉)) ↔ (𝑅 𝑆) ((𝑇 𝑈) 𝑉)))
4417, 40, 42, 28, 43syl13anc 1374 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉)) ↔ (𝑅 𝑆) ((𝑇 𝑈) 𝑉)))
4538, 44anbi12d 632 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∧ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))) ↔ ((𝑃 𝑄) ((𝑇 𝑈) 𝑉) ∧ (𝑅 𝑆) ((𝑇 𝑈) 𝑉))))
4618, 7latjass 18389 . . . . . 6 ((𝐾 ∈ Lat ∧ ((𝑃 𝑄) ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾) ∧ 𝑆 ∈ (Base‘𝐾))) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) (𝑅 𝑆)))
4717, 20, 40, 42, 46syl13anc 1374 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 𝑄) 𝑅) 𝑆) = ((𝑃 𝑄) (𝑅 𝑆)))
4847breq1d 5099 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((((𝑃 𝑄) 𝑅) 𝑆) ((𝑇 𝑈) 𝑉) ↔ ((𝑃 𝑄) (𝑅 𝑆)) ((𝑇 𝑈) 𝑉)))
4930, 45, 483bitr4d 311 . . 3 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → (((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∧ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))) ↔ (((𝑃 𝑄) 𝑅) 𝑆) ((𝑇 𝑈) 𝑉)))
5016, 49mtbird 325 . 2 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ¬ ((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∧ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))))
51 ianor 983 . . 3 (¬ ((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∧ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))) ↔ (¬ (𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ ¬ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))))
52 ianor 983 . . . 4 (¬ (𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ↔ (¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)))
53 ianor 983 . . . 4 (¬ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉)) ↔ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉)))
5452, 53orbi12i 914 . . 3 ((¬ (𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ ¬ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))) ↔ ((¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉))))
5551, 54bitri 275 . 2 (¬ ((𝑃 ((𝑇 𝑈) 𝑉) ∧ 𝑄 ((𝑇 𝑈) 𝑉)) ∧ (𝑅 ((𝑇 𝑈) 𝑉) ∧ 𝑆 ((𝑇 𝑈) 𝑉))) ↔ ((¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉))))
5650, 55sylib 218 1 ((((𝐾 ∈ HL ∧ 𝑃𝐴𝑄𝐴) ∧ (𝑅𝐴𝑆𝐴𝑇𝐴) ∧ (𝑈𝐴𝑉𝐴)) ∧ (𝑃𝑄 ∧ ¬ 𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 ((𝑃 𝑄) 𝑅))) → ((¬ 𝑃 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑄 ((𝑇 𝑈) 𝑉)) ∨ (¬ 𝑅 ((𝑇 𝑈) 𝑉) ∨ ¬ 𝑆 ((𝑇 𝑈) 𝑉))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5089  cfv 6481  (class class class)co 7346  Basecbs 17120  lecple 17168  joincjn 18217  Latclat 18337  Atomscatm 39372  HLchlt 39459  LVolsclvol 39602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39285  df-ol 39287  df-oml 39288  df-covers 39375  df-ats 39376  df-atl 39407  df-cvlat 39431  df-hlat 39460  df-llines 39607  df-lplanes 39608  df-lvols 39609
This theorem is referenced by:  4atlem3a  39706  4atlem12  39721
  Copyright terms: Public domain W3C validator