MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcollpw1lem1 Structured version   Visualization version   GIF version

Theorem pmatcollpw1lem1 22669
Description: Lemma 1 for pmatcollpw1 22671. (Contributed by AV, 28-Sep-2019.) (Revised by AV, 3-Dec-2019.)
Hypotheses
Ref Expression
pmatcollpw1.p 𝑃 = (Poly1𝑅)
pmatcollpw1.c 𝐶 = (𝑁 Mat 𝑃)
pmatcollpw1.b 𝐵 = (Base‘𝐶)
pmatcollpw1.m × = ( ·𝑠𝑃)
pmatcollpw1.e = (.g‘(mulGrp‘𝑃))
pmatcollpw1.x 𝑋 = (var1𝑅)
Assertion
Ref Expression
pmatcollpw1lem1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → (𝑛 ∈ ℕ0 ↦ ((𝐼(𝑀 decompPMat 𝑛)𝐽) × (𝑛 𝑋))) finSupp (0g𝑃))
Distinct variable groups:   𝐵,𝑛   𝑛,𝐼   𝑛,𝐽   𝑛,𝑀   𝑛,𝑁   𝑅,𝑛   𝑛,𝑋   × ,𝑛   ,𝑛
Allowed substitution hints:   𝐶(𝑛)   𝑃(𝑛)

Proof of Theorem pmatcollpw1lem1
Dummy variables 𝑠 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvexd 6906 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → (0g𝑃) ∈ V)
2 ovexd 7449 . 2 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑛 ∈ ℕ0) → ((𝐼(𝑀 decompPMat 𝑛)𝐽) × (𝑛 𝑋)) ∈ V)
3 oveq2 7422 . . . 4 (𝑛 = 𝑥 → (𝑀 decompPMat 𝑛) = (𝑀 decompPMat 𝑥))
43oveqd 7431 . . 3 (𝑛 = 𝑥 → (𝐼(𝑀 decompPMat 𝑛)𝐽) = (𝐼(𝑀 decompPMat 𝑥)𝐽))
5 oveq1 7421 . . 3 (𝑛 = 𝑥 → (𝑛 𝑋) = (𝑥 𝑋))
64, 5oveq12d 7432 . 2 (𝑛 = 𝑥 → ((𝐼(𝑀 decompPMat 𝑛)𝐽) × (𝑛 𝑋)) = ((𝐼(𝑀 decompPMat 𝑥)𝐽) × (𝑥 𝑋)))
7 pmatcollpw1.c . . . . 5 𝐶 = (𝑁 Mat 𝑃)
8 eqid 2727 . . . . 5 (Base‘𝑃) = (Base‘𝑃)
9 pmatcollpw1.b . . . . 5 𝐵 = (Base‘𝐶)
10 simp2 1135 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → 𝐼𝑁)
11 simp3 1136 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → 𝐽𝑁)
12 simp13 1203 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → 𝑀𝐵)
137, 8, 9, 10, 11, 12matecld 22321 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → (𝐼𝑀𝐽) ∈ (Base‘𝑃))
14 eqid 2727 . . . . 5 (coe1‘(𝐼𝑀𝐽)) = (coe1‘(𝐼𝑀𝐽))
15 pmatcollpw1.p . . . . 5 𝑃 = (Poly1𝑅)
16 eqid 2727 . . . . 5 (0g𝑅) = (0g𝑅)
1714, 8, 15, 16coe1ae0 22128 . . . 4 ((𝐼𝑀𝐽) ∈ (Base‘𝑃) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)))
1813, 17syl 17 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)))
19 simpl12 1247 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) → 𝑅 ∈ Ring)
2012adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) → 𝑀𝐵)
21 simpr 484 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) → 𝑥 ∈ ℕ0)
22 3simpc 1148 . . . . . . . . . . . . 13 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → (𝐼𝑁𝐽𝑁))
2322adantr 480 . . . . . . . . . . . 12 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) → (𝐼𝑁𝐽𝑁))
2415, 7, 9decpmate 22661 . . . . . . . . . . . 12 (((𝑅 ∈ Ring ∧ 𝑀𝐵𝑥 ∈ ℕ0) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑀 decompPMat 𝑥)𝐽) = ((coe1‘(𝐼𝑀𝐽))‘𝑥))
2519, 20, 21, 23, 24syl31anc 1371 . . . . . . . . . . 11 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) → (𝐼(𝑀 decompPMat 𝑥)𝐽) = ((coe1‘(𝐼𝑀𝐽))‘𝑥))
2625adantr 480 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) ∧ ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)) → (𝐼(𝑀 decompPMat 𝑥)𝐽) = ((coe1‘(𝐼𝑀𝐽))‘𝑥))
27 simpr 484 . . . . . . . . . 10 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) ∧ ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)) → ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅))
2826, 27eqtrd 2767 . . . . . . . . 9 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) ∧ ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)) → (𝐼(𝑀 decompPMat 𝑥)𝐽) = (0g𝑅))
2928oveq1d 7429 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) ∧ ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)) → ((𝐼(𝑀 decompPMat 𝑥)𝐽) × (𝑥 𝑋)) = ((0g𝑅) × (𝑥 𝑋)))
30 pmatcollpw1.x . . . . . . . . . . . 12 𝑋 = (var1𝑅)
31 eqid 2727 . . . . . . . . . . . 12 (mulGrp‘𝑃) = (mulGrp‘𝑃)
32 pmatcollpw1.e . . . . . . . . . . . 12 = (.g‘(mulGrp‘𝑃))
3315, 30, 31, 32, 8ply1moncl 22183 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝑥 ∈ ℕ0) → (𝑥 𝑋) ∈ (Base‘𝑃))
3419, 21, 33syl2anc 583 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) → (𝑥 𝑋) ∈ (Base‘𝑃))
35 pmatcollpw1.m . . . . . . . . . . 11 × = ( ·𝑠𝑃)
3615, 8, 35, 16ply10s0 22168 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑥 𝑋) ∈ (Base‘𝑃)) → ((0g𝑅) × (𝑥 𝑋)) = (0g𝑃))
3719, 34, 36syl2anc 583 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) → ((0g𝑅) × (𝑥 𝑋)) = (0g𝑃))
3837adantr 480 . . . . . . . 8 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) ∧ ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)) → ((0g𝑅) × (𝑥 𝑋)) = (0g𝑃))
3929, 38eqtrd 2767 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) ∧ ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)) → ((𝐼(𝑀 decompPMat 𝑥)𝐽) × (𝑥 𝑋)) = (0g𝑃))
4039ex 412 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) → (((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅) → ((𝐼(𝑀 decompPMat 𝑥)𝐽) × (𝑥 𝑋)) = (0g𝑃)))
4140imim2d 57 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) ∧ 𝑥 ∈ ℕ0) → ((𝑠 < 𝑥 → ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)) → (𝑠 < 𝑥 → ((𝐼(𝑀 decompPMat 𝑥)𝐽) × (𝑥 𝑋)) = (0g𝑃))))
4241ralimdva 3162 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → (∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝐼(𝑀 decompPMat 𝑥)𝐽) × (𝑥 𝑋)) = (0g𝑃))))
4342reximdv 3165 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → (∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((coe1‘(𝐼𝑀𝐽))‘𝑥) = (0g𝑅)) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝐼(𝑀 decompPMat 𝑥)𝐽) × (𝑥 𝑋)) = (0g𝑃))))
4418, 43mpd 15 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ((𝐼(𝑀 decompPMat 𝑥)𝐽) × (𝑥 𝑋)) = (0g𝑃)))
451, 2, 6, 44mptnn0fsuppd 13989 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝐼𝑁𝐽𝑁) → (𝑛 ∈ ℕ0 ↦ ((𝐼(𝑀 decompPMat 𝑛)𝐽) × (𝑛 𝑋))) finSupp (0g𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wral 3056  wrex 3065  Vcvv 3469   class class class wbr 5142  cmpt 5225  cfv 6542  (class class class)co 7414  Fincfn 8957   finSupp cfsupp 9379   < clt 11272  0cn0 12496  Basecbs 17173   ·𝑠 cvsca 17230  0gc0g 17414  .gcmg 19016  mulGrpcmgp 20067  Ringcrg 20166  var1cv1 22088  Poly1cpl1 22089  coe1cco1 22090   Mat cmat 22300   decompPMat cdecpmat 22657
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-iin 4994  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-isom 6551  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7679  df-ofr 7680  df-om 7865  df-1st 7987  df-2nd 7988  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8718  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9380  df-sup 9459  df-oi 9527  df-card 9956  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-5 12302  df-6 12303  df-7 12304  df-8 12305  df-9 12306  df-n0 12497  df-z 12583  df-dec 12702  df-uz 12847  df-fz 13511  df-fzo 13654  df-seq 13993  df-hash 14316  df-struct 17109  df-sets 17126  df-slot 17144  df-ndx 17156  df-base 17174  df-ress 17203  df-plusg 17239  df-mulr 17240  df-sca 17242  df-vsca 17243  df-ip 17244  df-tset 17245  df-ple 17246  df-ds 17248  df-hom 17250  df-cco 17251  df-0g 17416  df-gsum 17417  df-prds 17422  df-pws 17424  df-mre 17559  df-mrc 17560  df-acs 17562  df-mgm 18593  df-sgrp 18672  df-mnd 18688  df-mhm 18733  df-submnd 18734  df-grp 18886  df-minusg 18887  df-sbg 18888  df-mulg 19017  df-subg 19071  df-ghm 19161  df-cntz 19261  df-cmn 19730  df-abl 19731  df-mgp 20068  df-rng 20086  df-ur 20115  df-ring 20168  df-subrng 20476  df-subrg 20501  df-lmod 20738  df-lss 20809  df-sra 21051  df-rgmod 21052  df-dsmm 21659  df-frlm 21674  df-psr 21835  df-mvr 21836  df-mpl 21837  df-opsr 21839  df-psr1 22092  df-vr1 22093  df-ply1 22094  df-coe1 22095  df-mat 22301  df-decpmat 22658
This theorem is referenced by:  pmatcollpw1  22671
  Copyright terms: Public domain W3C validator