| Step | Hyp | Ref
| Expression |
| 1 | | pmatcollpw1.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
| 2 | | pmatcollpw1.c |
. . . . 5
⊢ 𝐶 = (𝑁 Mat 𝑃) |
| 3 | | pmatcollpw1.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐶) |
| 4 | | pmatcollpw1.m |
. . . . 5
⊢ × = (
·𝑠 ‘𝑃) |
| 5 | | pmatcollpw1.e |
. . . . 5
⊢ ↑ =
(.g‘(mulGrp‘𝑃)) |
| 6 | | pmatcollpw1.x |
. . . . 5
⊢ 𝑋 = (var1‘𝑅) |
| 7 | 1, 2, 3, 4, 5, 6 | pmatcollpw1lem2 22713 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎𝑀𝑏) = (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝑎(𝑀 decompPMat 𝑛)𝑏) × (𝑛 ↑ 𝑋))))) |
| 8 | | eqidd 2736 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))) = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))))) |
| 9 | | oveq12 7414 |
. . . . . . . . 9
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (𝑖(𝑀 decompPMat 𝑛)𝑗) = (𝑎(𝑀 decompPMat 𝑛)𝑏)) |
| 10 | 9 | oveq1d 7420 |
. . . . . . . 8
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)) = ((𝑎(𝑀 decompPMat 𝑛)𝑏) × (𝑛 ↑ 𝑋))) |
| 11 | 10 | mpteq2dv 5215 |
. . . . . . 7
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (𝑛 ∈ ℕ0 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))) = (𝑛 ∈ ℕ0 ↦ ((𝑎(𝑀 decompPMat 𝑛)𝑏) × (𝑛 ↑ 𝑋)))) |
| 12 | 11 | oveq2d 7421 |
. . . . . 6
⊢ ((𝑖 = 𝑎 ∧ 𝑗 = 𝑏) → (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) = (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝑎(𝑀 decompPMat 𝑛)𝑏) × (𝑛 ↑ 𝑋))))) |
| 13 | 12 | adantl 481 |
. . . . 5
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ (𝑖 = 𝑎 ∧ 𝑗 = 𝑏)) → (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) = (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝑎(𝑀 decompPMat 𝑛)𝑏) × (𝑛 ↑ 𝑋))))) |
| 14 | | simprl 770 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑎 ∈ 𝑁) |
| 15 | | simprr 772 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑏 ∈ 𝑁) |
| 16 | | eqid 2735 |
. . . . . 6
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 17 | | eqid 2735 |
. . . . . 6
⊢
(0g‘𝑃) = (0g‘𝑃) |
| 18 | 1 | ply1ring 22183 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 19 | | ringcmn 20242 |
. . . . . . . . 9
⊢ (𝑃 ∈ Ring → 𝑃 ∈ CMnd) |
| 20 | 18, 19 | syl 17 |
. . . . . . . 8
⊢ (𝑅 ∈ Ring → 𝑃 ∈ CMnd) |
| 21 | 20 | 3ad2ant2 1134 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ CMnd) |
| 22 | 21 | adantr 480 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑃 ∈ CMnd) |
| 23 | | nn0ex 12507 |
. . . . . . 7
⊢
ℕ0 ∈ V |
| 24 | 23 | a1i 11 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → ℕ0 ∈
V) |
| 25 | | simpl2 1193 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑅 ∈ Ring) |
| 26 | 25 | adantr 480 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) |
| 27 | | eqid 2735 |
. . . . . . . . 9
⊢ (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅) |
| 28 | | eqid 2735 |
. . . . . . . . 9
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 29 | | eqid 2735 |
. . . . . . . . 9
⊢
(Base‘(𝑁 Mat
𝑅)) = (Base‘(𝑁 Mat 𝑅)) |
| 30 | | simplrl 776 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) → 𝑎 ∈ 𝑁) |
| 31 | 15 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) → 𝑏 ∈ 𝑁) |
| 32 | | simpl3 1194 |
. . . . . . . . . . 11
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → 𝑀 ∈ 𝐵) |
| 33 | 32 | adantr 480 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ 𝐵) |
| 34 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
| 35 | 1, 2, 3, 27, 29 | decpmatcl 22705 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵 ∧ 𝑛 ∈ ℕ0) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) |
| 36 | 26, 33, 34, 35 | syl3anc 1373 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) |
| 37 | 27, 28, 29, 30, 31, 36 | matecld 22364 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) → (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅)) |
| 38 | | eqid 2735 |
. . . . . . . . 9
⊢
(mulGrp‘𝑃) =
(mulGrp‘𝑃) |
| 39 | 28, 1, 6, 4, 38, 5,
16 | ply1tmcl 22209 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ (𝑎(𝑀 decompPMat 𝑛)𝑏) ∈ (Base‘𝑅) ∧ 𝑛 ∈ ℕ0) → ((𝑎(𝑀 decompPMat 𝑛)𝑏) × (𝑛 ↑ 𝑋)) ∈ (Base‘𝑃)) |
| 40 | 26, 37, 34, 39 | syl3anc 1373 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) ∧ 𝑛 ∈ ℕ0) → ((𝑎(𝑀 decompPMat 𝑛)𝑏) × (𝑛 ↑ 𝑋)) ∈ (Base‘𝑃)) |
| 41 | 40 | fmpttd 7105 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑛 ∈ ℕ0 ↦ ((𝑎(𝑀 decompPMat 𝑛)𝑏) × (𝑛 ↑ 𝑋))):ℕ0⟶(Base‘𝑃)) |
| 42 | 1, 2, 3, 4, 5, 6 | pmatcollpw1lem1 22712 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁) → (𝑛 ∈ ℕ0 ↦ ((𝑎(𝑀 decompPMat 𝑛)𝑏) × (𝑛 ↑ 𝑋))) finSupp (0g‘𝑃)) |
| 43 | 42 | 3expb 1120 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑛 ∈ ℕ0 ↦ ((𝑎(𝑀 decompPMat 𝑛)𝑏) × (𝑛 ↑ 𝑋))) finSupp (0g‘𝑃)) |
| 44 | 16, 17, 22, 24, 41, 43 | gsumcl 19896 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝑎(𝑀 decompPMat 𝑛)𝑏) × (𝑛 ↑ 𝑋)))) ∈ (Base‘𝑃)) |
| 45 | 8, 13, 14, 15, 44 | ovmpod 7559 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))))𝑏) = (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝑎(𝑀 decompPMat 𝑛)𝑏) × (𝑛 ↑ 𝑋))))) |
| 46 | 7, 45 | eqtr4d 2773 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ (𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁)) → (𝑎𝑀𝑏) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))))𝑏)) |
| 47 | 46 | ralrimivva 3187 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 (𝑎𝑀𝑏) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))))𝑏)) |
| 48 | | simp3 1138 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) |
| 49 | | simp1 1136 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) |
| 50 | 18 | 3ad2ant2 1134 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑃 ∈ Ring) |
| 51 | 21 | 3ad2ant1 1133 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑃 ∈ CMnd) |
| 52 | 23 | a1i 11 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ℕ0 ∈
V) |
| 53 | | simpl12 1250 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑛 ∈ ℕ0) → 𝑅 ∈ Ring) |
| 54 | | simpl2 1193 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑛 ∈ ℕ0) → 𝑖 ∈ 𝑁) |
| 55 | | simpl3 1194 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑛 ∈ ℕ0) → 𝑗 ∈ 𝑁) |
| 56 | 48 | 3ad2ant1 1133 |
. . . . . . . . . 10
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑀 ∈ 𝐵) |
| 57 | 56 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑛 ∈ ℕ0) → 𝑀 ∈ 𝐵) |
| 58 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑛 ∈ ℕ0) → 𝑛 ∈
ℕ0) |
| 59 | 53, 57, 58, 35 | syl3anc 1373 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑛 ∈ ℕ0) → (𝑀 decompPMat 𝑛) ∈ (Base‘(𝑁 Mat 𝑅))) |
| 60 | 27, 28, 29, 54, 55, 59 | matecld 22364 |
. . . . . . 7
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑛 ∈ ℕ0) → (𝑖(𝑀 decompPMat 𝑛)𝑗) ∈ (Base‘𝑅)) |
| 61 | 28, 1, 6, 4, 38, 5,
16 | ply1tmcl 22209 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ (𝑖(𝑀 decompPMat 𝑛)𝑗) ∈ (Base‘𝑅) ∧ 𝑛 ∈ ℕ0) → ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)) ∈ (Base‘𝑃)) |
| 62 | 53, 60, 58, 61 | syl3anc 1373 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) ∧ 𝑛 ∈ ℕ0) → ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)) ∈ (Base‘𝑃)) |
| 63 | 62 | fmpttd 7105 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑛 ∈ ℕ0 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))):ℕ0⟶(Base‘𝑃)) |
| 64 | 1, 2, 3, 4, 5, 6 | pmatcollpw1lem1 22712 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑛 ∈ ℕ0 ↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))) finSupp (0g‘𝑃)) |
| 65 | 16, 17, 51, 52, 63, 64 | gsumcl 19896 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))) ∈ (Base‘𝑃)) |
| 66 | 2, 16, 3, 49, 50, 65 | matbas2d 22361 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))) ∈ 𝐵) |
| 67 | 2, 3 | eqmat 22362 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))) ∈ 𝐵) → (𝑀 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))) ↔ ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 (𝑎𝑀𝑏) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))))𝑏))) |
| 68 | 48, 66, 67 | syl2anc 584 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑀 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋))))) ↔ ∀𝑎 ∈ 𝑁 ∀𝑏 ∈ 𝑁 (𝑎𝑀𝑏) = (𝑎(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))))𝑏))) |
| 69 | 47, 68 | mpbird 257 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 = (𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ (𝑃 Σg (𝑛 ∈ ℕ0
↦ ((𝑖(𝑀 decompPMat 𝑛)𝑗) × (𝑛 ↑ 𝑋)))))) |