Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  3dimlem3OLDN Structured version   Visualization version   GIF version

Theorem 3dimlem3OLDN 37954
Description: Lemma for 3dim1 37959. (Contributed by NM, 25-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
3dim0.j ∨ = (joinβ€˜πΎ)
3dim0.l ≀ = (leβ€˜πΎ)
3dim0.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
3dimlem3OLDN ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅)))

Proof of Theorem 3dimlem3OLDN
StepHypRef Expression
1 simpr1 1195 . 2 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ 𝑃 β‰  𝑄)
2 simpr2 1196 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅))
3 simpl11 1249 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ 𝐾 ∈ HL)
4 simpl2l 1227 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ 𝑅 ∈ 𝐴)
5 simpl12 1250 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ 𝑃 ∈ 𝐴)
6 simpl13 1251 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ 𝑄 ∈ 𝐴)
7 simpl3l 1229 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ 𝑄 β‰  𝑅)
87necomd 3000 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ 𝑅 β‰  𝑄)
9 3dim0.l . . . . . 6 ≀ = (leβ€˜πΎ)
10 3dim0.j . . . . . 6 ∨ = (joinβ€˜πΎ)
11 3dim0.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
129, 10, 11hlatexch2 37888 . . . . 5 ((𝐾 ∈ HL ∧ (𝑅 ∈ 𝐴 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑅 β‰  𝑄) β†’ (𝑅 ≀ (𝑃 ∨ 𝑄) β†’ 𝑃 ≀ (𝑅 ∨ 𝑄)))
133, 4, 5, 6, 8, 12syl131anc 1384 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ (𝑅 ≀ (𝑃 ∨ 𝑄) β†’ 𝑃 ≀ (𝑅 ∨ 𝑄)))
1410, 11hlatjcom 37859 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) β†’ (𝑄 ∨ 𝑅) = (𝑅 ∨ 𝑄))
153, 6, 4, 14syl3anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ (𝑄 ∨ 𝑅) = (𝑅 ∨ 𝑄))
1615breq2d 5122 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ (𝑃 ≀ (𝑄 ∨ 𝑅) ↔ 𝑃 ≀ (𝑅 ∨ 𝑄)))
1713, 16sylibrd 259 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ (𝑅 ≀ (𝑃 ∨ 𝑄) β†’ 𝑃 ≀ (𝑄 ∨ 𝑅)))
182, 17mtod 197 . 2 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄))
19 simpl3r 1230 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))
20 hllat 37854 . . . . . . 7 (𝐾 ∈ HL β†’ 𝐾 ∈ Lat)
213, 20syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ 𝐾 ∈ Lat)
22 eqid 2737 . . . . . . . 8 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
2322, 11atbase 37780 . . . . . . 7 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
246, 23syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
2522, 11atbase 37780 . . . . . . 7 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
264, 25syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
2722, 11atbase 37780 . . . . . . 7 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
285, 27syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
2922, 10latjrot 18384 . . . . . 6 ((𝐾 ∈ Lat ∧ (𝑄 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ) ∧ 𝑃 ∈ (Baseβ€˜πΎ))) β†’ ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑃 ∨ 𝑄) ∨ 𝑅))
3021, 24, 26, 28, 29syl13anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑃 ∨ 𝑄) ∨ 𝑅))
31 simpr3 1197 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))
32 simpl2r 1228 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ 𝑆 ∈ 𝐴)
3322, 10, 11hlatjcl 37858 . . . . . . . 8 ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) β†’ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ))
343, 6, 4, 33syl3anc 1372 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ))
3522, 9, 10, 11hlexchb1 37876 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴 ∧ (𝑄 ∨ 𝑅) ∈ (Baseβ€˜πΎ)) ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅)) β†’ (𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆) ↔ ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑄 ∨ 𝑅) ∨ 𝑆)))
363, 5, 32, 34, 2, 35syl131anc 1384 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ (𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆) ↔ ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑄 ∨ 𝑅) ∨ 𝑆)))
3731, 36mpbid 231 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ ((𝑄 ∨ 𝑅) ∨ 𝑃) = ((𝑄 ∨ 𝑅) ∨ 𝑆))
3830, 37eqtr3d 2779 . . . 4 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ ((𝑃 ∨ 𝑄) ∨ 𝑅) = ((𝑄 ∨ 𝑅) ∨ 𝑆))
3938breq2d 5122 . . 3 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ (𝑇 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅) ↔ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆)))
4019, 39mtbird 325 . 2 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ Β¬ 𝑇 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅))
411, 18, 403jca 1129 1 ((((𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ (𝑅 ∈ 𝐴 ∧ 𝑆 ∈ 𝐴) ∧ (𝑄 β‰  𝑅 ∧ Β¬ 𝑇 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) ∧ (𝑃 β‰  𝑄 ∧ Β¬ 𝑃 ≀ (𝑄 ∨ 𝑅) ∧ 𝑃 ≀ ((𝑄 ∨ 𝑅) ∨ 𝑆))) β†’ (𝑃 β‰  𝑄 ∧ Β¬ 𝑅 ≀ (𝑃 ∨ 𝑄) ∧ Β¬ 𝑇 ≀ ((𝑃 ∨ 𝑄) ∨ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 397   ∧ w3a 1088   = wceq 1542   ∈ wcel 2107   β‰  wne 2944   class class class wbr 5110  β€˜cfv 6501  (class class class)co 7362  Basecbs 17090  lecple 17147  joincjn 18207  Latclat 18327  Atomscatm 37754  HLchlt 37841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-ral 3066  df-rex 3075  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-iun 4961  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-proset 18191  df-poset 18209  df-plt 18226  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-p0 18321  df-lat 18328  df-covers 37757  df-ats 37758  df-atl 37789  df-cvlat 37813  df-hlat 37842
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator