Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpl21 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl21 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
2 | 1 | 3ad2antl2 1185 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: frrlem10 8181 nosupbnd2lem1 26969 noinfbnd2lem1 26984 brbtwn2 27562 ax5seglem3a 27587 ax5seg 27595 axpasch 27598 axeuclid 27620 br8d 31237 br8 34012 cgrextend 34406 segconeq 34408 trisegint 34426 ifscgr 34442 cgrsub 34443 cgrxfr 34453 lineext 34474 seglecgr12im 34508 segletr 34512 lineunray 34545 lineelsb2 34546 cvrcmp 37550 cvlatexch3 37605 cvlsupr2 37610 atexchcvrN 37708 3dim1 37735 3dim2 37736 ps-1 37745 ps-2 37746 3atlem3 37753 3atlem5 37755 lplnnle2at 37809 lplnllnneN 37824 2llnjaN 37834 4atlem3 37864 4atlem10b 37873 4atlem12 37880 2llnma3r 38056 paddasslem4 38091 paddasslem7 38094 paddasslem8 38095 paddasslem12 38099 paddasslem13 38100 pmodlem1 38114 pmodlem2 38115 llnexchb2lem 38136 4atex2 38345 ltrnatlw 38451 trlval4 38456 arglem1N 38458 cdlemd4 38469 cdlemd5 38470 cdleme0moN 38493 cdleme16 38553 cdleme20 38592 cdleme21j 38604 cdleme21k 38606 cdleme27N 38637 cdleme28c 38640 cdleme43fsv1snlem 38688 cdleme38n 38732 cdleme40n 38736 cdleme41snaw 38744 cdlemg6c 38888 cdlemg8c 38897 cdlemg8 38899 cdlemg12e 38915 cdlemg16 38925 cdlemg16ALTN 38926 cdlemg16z 38927 cdlemg16zz 38928 cdlemg18a 38946 cdlemg20 38953 cdlemg22 38955 cdlemg37 38957 cdlemg27b 38964 cdlemg31d 38968 cdlemg33 38979 cdlemg38 38983 cdlemg44b 39000 cdlemk38 39183 cdlemk35s-id 39206 cdlemk39s-id 39208 cdlemk55 39229 cdlemk35u 39232 cdlemk55u 39234 cdleml3N 39246 cdlemn11pre 39478 |
Copyright terms: Public domain | W3C validator |