Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpl21 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl21 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
2 | 1 | 3ad2antl2 1185 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: frrlem10 8120 brbtwn2 27282 ax5seglem3a 27307 ax5seg 27315 axpasch 27318 axeuclid 27340 br8d 30959 br8 33732 nosupbnd2lem1 33927 noinfbnd2lem1 33942 cgrextend 34319 segconeq 34321 trisegint 34339 ifscgr 34355 cgrsub 34356 cgrxfr 34366 lineext 34387 seglecgr12im 34421 segletr 34425 lineunray 34458 lineelsb2 34459 cvrcmp 37304 cvlatexch3 37359 cvlsupr2 37364 atexchcvrN 37461 3dim1 37488 3dim2 37489 ps-1 37498 ps-2 37499 3atlem3 37506 3atlem5 37508 lplnnle2at 37562 lplnllnneN 37577 2llnjaN 37587 4atlem3 37617 4atlem10b 37626 4atlem12 37633 2llnma3r 37809 paddasslem4 37844 paddasslem7 37847 paddasslem8 37848 paddasslem12 37852 paddasslem13 37853 pmodlem1 37867 pmodlem2 37868 llnexchb2lem 37889 4atex2 38098 ltrnatlw 38204 trlval4 38209 arglem1N 38211 cdlemd4 38222 cdlemd5 38223 cdleme0moN 38246 cdleme16 38306 cdleme20 38345 cdleme21j 38357 cdleme21k 38359 cdleme27N 38390 cdleme28c 38393 cdleme43fsv1snlem 38441 cdleme38n 38485 cdleme40n 38489 cdleme41snaw 38497 cdlemg6c 38641 cdlemg8c 38650 cdlemg8 38652 cdlemg12e 38668 cdlemg16 38678 cdlemg16ALTN 38679 cdlemg16z 38680 cdlemg16zz 38681 cdlemg18a 38699 cdlemg20 38706 cdlemg22 38708 cdlemg37 38710 cdlemg27b 38717 cdlemg31d 38721 cdlemg33 38732 cdlemg38 38736 cdlemg44b 38753 cdlemk38 38936 cdlemk35s-id 38959 cdlemk39s-id 38961 cdlemk55 38982 cdlemk35u 38985 cdlemk55u 38987 cdleml3N 38999 cdlemn11pre 39231 |
Copyright terms: Public domain | W3C validator |