| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl21 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl21 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
| 2 | 1 | 3ad2antl2 1187 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: frrlem10 8292 nosupbnd2lem1 27677 noinfbnd2lem1 27692 brbtwn2 28830 ax5seglem3a 28855 ax5seg 28863 axpasch 28866 axeuclid 28888 br8d 32536 br8 35719 cgrextend 35972 segconeq 35974 trisegint 35992 ifscgr 36008 cgrsub 36009 cgrxfr 36019 lineext 36040 seglecgr12im 36074 segletr 36078 lineunray 36111 lineelsb2 36112 cvrcmp 39247 cvlatexch3 39302 cvlsupr2 39307 atexchcvrN 39405 3dim1 39432 3dim2 39433 ps-1 39442 ps-2 39443 3atlem3 39450 3atlem5 39452 lplnnle2at 39506 lplnllnneN 39521 2llnjaN 39531 4atlem3 39561 4atlem10b 39570 4atlem12 39577 2llnma3r 39753 paddasslem4 39788 paddasslem7 39791 paddasslem8 39792 paddasslem12 39796 paddasslem13 39797 pmodlem1 39811 pmodlem2 39812 llnexchb2lem 39833 4atex2 40042 ltrnatlw 40148 trlval4 40153 arglem1N 40155 cdlemd4 40166 cdlemd5 40167 cdleme0moN 40190 cdleme16 40250 cdleme20 40289 cdleme21j 40301 cdleme21k 40303 cdleme27N 40334 cdleme28c 40337 cdleme43fsv1snlem 40385 cdleme38n 40429 cdleme40n 40433 cdleme41snaw 40441 cdlemg6c 40585 cdlemg8c 40594 cdlemg8 40596 cdlemg12e 40612 cdlemg16 40622 cdlemg16ALTN 40623 cdlemg16z 40624 cdlemg16zz 40625 cdlemg18a 40643 cdlemg20 40650 cdlemg22 40652 cdlemg37 40654 cdlemg27b 40661 cdlemg31d 40665 cdlemg33 40676 cdlemg38 40680 cdlemg44b 40697 cdlemk38 40880 cdlemk35s-id 40903 cdlemk39s-id 40905 cdlemk55 40926 cdlemk35u 40929 cdlemk55u 40931 cdleml3N 40943 cdlemn11pre 41175 |
| Copyright terms: Public domain | W3C validator |