![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl21 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl21 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1182 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
2 | 1 | 3ad2antl2 1177 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1078 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 208 df-an 397 df-3an 1080 |
This theorem is referenced by: brbtwn2 26362 ax5seglem3a 26387 ax5seg 26395 axpasch 26398 axeuclid 26420 br8d 30026 br8 32545 frrlem10 32686 nosupbnd2lem1 32769 cgrextend 33023 segconeq 33025 trisegint 33043 ifscgr 33059 cgrsub 33060 cgrxfr 33070 lineext 33091 seglecgr12im 33125 segletr 33129 lineunray 33162 lineelsb2 33163 cvrcmp 35900 cvlatexch3 35955 cvlsupr2 35960 atexchcvrN 36057 3dim1 36084 3dim2 36085 ps-1 36094 ps-2 36095 3atlem3 36102 3atlem5 36104 lplnnle2at 36158 lplnllnneN 36173 2llnjaN 36183 4atlem3 36213 4atlem10b 36222 4atlem12 36229 2llnma3r 36405 paddasslem4 36440 paddasslem7 36443 paddasslem8 36444 paddasslem12 36448 paddasslem13 36449 pmodlem1 36463 pmodlem2 36464 llnexchb2lem 36485 4atex2 36694 ltrnatlw 36800 trlval4 36805 arglem1N 36807 cdlemd4 36818 cdlemd5 36819 cdleme0moN 36842 cdleme16 36902 cdleme20 36941 cdleme21j 36953 cdleme21k 36955 cdleme27N 36986 cdleme28c 36989 cdleme43fsv1snlem 37037 cdleme38n 37081 cdleme40n 37085 cdleme41snaw 37093 cdlemg6c 37237 cdlemg8c 37246 cdlemg8 37248 cdlemg12e 37264 cdlemg16 37274 cdlemg16ALTN 37275 cdlemg16z 37276 cdlemg16zz 37277 cdlemg18a 37295 cdlemg20 37302 cdlemg22 37304 cdlemg37 37306 cdlemg27b 37313 cdlemg31d 37317 cdlemg33 37328 cdlemg38 37332 cdlemg44b 37349 cdlemk38 37532 cdlemk35s-id 37555 cdlemk39s-id 37557 cdlemk55 37578 cdlemk35u 37581 cdlemk55u 37583 cdleml3N 37595 cdlemn11pre 37827 |
Copyright terms: Public domain | W3C validator |