| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simpl21 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
| Ref | Expression |
|---|---|
| simpl21 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
| 2 | 1 | 3ad2antl2 1187 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: frrlem10 8274 nosupbnd2lem1 27627 noinfbnd2lem1 27642 brbtwn2 28832 ax5seglem3a 28857 ax5seg 28865 axpasch 28868 axeuclid 28890 br8d 32538 br8 35743 cgrextend 35996 segconeq 35998 trisegint 36016 ifscgr 36032 cgrsub 36033 cgrxfr 36043 lineext 36064 seglecgr12im 36098 segletr 36102 lineunray 36135 lineelsb2 36136 cvrcmp 39276 cvlatexch3 39331 cvlsupr2 39336 atexchcvrN 39434 3dim1 39461 3dim2 39462 ps-1 39471 ps-2 39472 3atlem3 39479 3atlem5 39481 lplnnle2at 39535 lplnllnneN 39550 2llnjaN 39560 4atlem3 39590 4atlem10b 39599 4atlem12 39606 2llnma3r 39782 paddasslem4 39817 paddasslem7 39820 paddasslem8 39821 paddasslem12 39825 paddasslem13 39826 pmodlem1 39840 pmodlem2 39841 llnexchb2lem 39862 4atex2 40071 ltrnatlw 40177 trlval4 40182 arglem1N 40184 cdlemd4 40195 cdlemd5 40196 cdleme0moN 40219 cdleme16 40279 cdleme20 40318 cdleme21j 40330 cdleme21k 40332 cdleme27N 40363 cdleme28c 40366 cdleme43fsv1snlem 40414 cdleme38n 40458 cdleme40n 40462 cdleme41snaw 40470 cdlemg6c 40614 cdlemg8c 40623 cdlemg8 40625 cdlemg12e 40641 cdlemg16 40651 cdlemg16ALTN 40652 cdlemg16z 40653 cdlemg16zz 40654 cdlemg18a 40672 cdlemg20 40679 cdlemg22 40681 cdlemg37 40683 cdlemg27b 40690 cdlemg31d 40694 cdlemg33 40705 cdlemg38 40709 cdlemg44b 40726 cdlemk38 40909 cdlemk35s-id 40932 cdlemk39s-id 40934 cdlemk55 40955 cdlemk35u 40958 cdlemk55u 40960 cdleml3N 40972 cdlemn11pre 41204 |
| Copyright terms: Public domain | W3C validator |