Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simpl21 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl21 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1189 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
2 | 1 | 3ad2antl2 1184 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: frrlem10 8082 brbtwn2 27176 ax5seglem3a 27201 ax5seg 27209 axpasch 27212 axeuclid 27234 br8d 30851 br8 33629 nosupbnd2lem1 33845 noinfbnd2lem1 33860 cgrextend 34237 segconeq 34239 trisegint 34257 ifscgr 34273 cgrsub 34274 cgrxfr 34284 lineext 34305 seglecgr12im 34339 segletr 34343 lineunray 34376 lineelsb2 34377 cvrcmp 37224 cvlatexch3 37279 cvlsupr2 37284 atexchcvrN 37381 3dim1 37408 3dim2 37409 ps-1 37418 ps-2 37419 3atlem3 37426 3atlem5 37428 lplnnle2at 37482 lplnllnneN 37497 2llnjaN 37507 4atlem3 37537 4atlem10b 37546 4atlem12 37553 2llnma3r 37729 paddasslem4 37764 paddasslem7 37767 paddasslem8 37768 paddasslem12 37772 paddasslem13 37773 pmodlem1 37787 pmodlem2 37788 llnexchb2lem 37809 4atex2 38018 ltrnatlw 38124 trlval4 38129 arglem1N 38131 cdlemd4 38142 cdlemd5 38143 cdleme0moN 38166 cdleme16 38226 cdleme20 38265 cdleme21j 38277 cdleme21k 38279 cdleme27N 38310 cdleme28c 38313 cdleme43fsv1snlem 38361 cdleme38n 38405 cdleme40n 38409 cdleme41snaw 38417 cdlemg6c 38561 cdlemg8c 38570 cdlemg8 38572 cdlemg12e 38588 cdlemg16 38598 cdlemg16ALTN 38599 cdlemg16z 38600 cdlemg16zz 38601 cdlemg18a 38619 cdlemg20 38626 cdlemg22 38628 cdlemg37 38630 cdlemg27b 38637 cdlemg31d 38641 cdlemg33 38652 cdlemg38 38656 cdlemg44b 38673 cdlemk38 38856 cdlemk35s-id 38879 cdlemk39s-id 38881 cdlemk55 38902 cdlemk35u 38905 cdlemk55u 38907 cdleml3N 38919 cdlemn11pre 39151 |
Copyright terms: Public domain | W3C validator |