![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simpl21 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 24-Jun-2022.) |
Ref | Expression |
---|---|
simpl21 | ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1191 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜂) → 𝜑) | |
2 | 1 | 3ad2antl2 1186 | 1 ⊢ (((𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒) ∧ 𝜏) ∧ 𝜂) → 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: frrlem10 8336 nosupbnd2lem1 27778 noinfbnd2lem1 27793 brbtwn2 28938 ax5seglem3a 28963 ax5seg 28971 axpasch 28974 axeuclid 28996 br8d 32632 br8 35718 cgrextend 35972 segconeq 35974 trisegint 35992 ifscgr 36008 cgrsub 36009 cgrxfr 36019 lineext 36040 seglecgr12im 36074 segletr 36078 lineunray 36111 lineelsb2 36112 cvrcmp 39239 cvlatexch3 39294 cvlsupr2 39299 atexchcvrN 39397 3dim1 39424 3dim2 39425 ps-1 39434 ps-2 39435 3atlem3 39442 3atlem5 39444 lplnnle2at 39498 lplnllnneN 39513 2llnjaN 39523 4atlem3 39553 4atlem10b 39562 4atlem12 39569 2llnma3r 39745 paddasslem4 39780 paddasslem7 39783 paddasslem8 39784 paddasslem12 39788 paddasslem13 39789 pmodlem1 39803 pmodlem2 39804 llnexchb2lem 39825 4atex2 40034 ltrnatlw 40140 trlval4 40145 arglem1N 40147 cdlemd4 40158 cdlemd5 40159 cdleme0moN 40182 cdleme16 40242 cdleme20 40281 cdleme21j 40293 cdleme21k 40295 cdleme27N 40326 cdleme28c 40329 cdleme43fsv1snlem 40377 cdleme38n 40421 cdleme40n 40425 cdleme41snaw 40433 cdlemg6c 40577 cdlemg8c 40586 cdlemg8 40588 cdlemg12e 40604 cdlemg16 40614 cdlemg16ALTN 40615 cdlemg16z 40616 cdlemg16zz 40617 cdlemg18a 40635 cdlemg20 40642 cdlemg22 40644 cdlemg37 40646 cdlemg27b 40653 cdlemg31d 40657 cdlemg33 40668 cdlemg38 40672 cdlemg44b 40689 cdlemk38 40872 cdlemk35s-id 40895 cdlemk39s-id 40897 cdlemk55 40918 cdlemk35u 40921 cdlemk55u 40923 cdleml3N 40935 cdlemn11pre 41167 |
Copyright terms: Public domain | W3C validator |