MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mply1topmatcl Structured version   Visualization version   GIF version

Theorem mply1topmatcl 22699
Description: A polynomial over matrices transformed into a polynomial matrix is a polynomial matrix. (Contributed by AV, 6-Oct-2019.)
Hypotheses
Ref Expression
mply1topmat.a 𝐴 = (𝑁 Mat 𝑅)
mply1topmat.q 𝑄 = (Poly1𝐴)
mply1topmat.l 𝐿 = (Base‘𝑄)
mply1topmat.p 𝑃 = (Poly1𝑅)
mply1topmat.m · = ( ·𝑠𝑃)
mply1topmat.e 𝐸 = (.g‘(mulGrp‘𝑃))
mply1topmat.y 𝑌 = (var1𝑅)
mply1topmat.i 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
mply1topmatcl.c 𝐶 = (𝑁 Mat 𝑃)
mply1topmatcl.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
mply1topmatcl ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝐼𝑂) ∈ 𝐵)
Distinct variable groups:   𝑖,𝑁,𝑗,𝑝   𝐸,𝑝   𝐿,𝑝   𝑃,𝑝   𝑌,𝑝   𝑖,𝑂,𝑗,𝑘,𝑝   · ,𝑘,𝑝   𝑖,𝐿,𝑗,𝑘   𝑘,𝑁   𝑃,𝑖,𝑗,𝑘   𝑅,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘,𝑝)   𝐵(𝑖,𝑗,𝑘,𝑝)   𝐶(𝑖,𝑗,𝑘,𝑝)   𝑄(𝑖,𝑗,𝑘,𝑝)   𝑅(𝑝)   · (𝑖,𝑗)   𝐸(𝑖,𝑗,𝑘)   𝐼(𝑖,𝑗,𝑘,𝑝)   𝑌(𝑖,𝑗,𝑘)

Proof of Theorem mply1topmatcl
StepHypRef Expression
1 mply1topmat.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
2 mply1topmat.q . . . 4 𝑄 = (Poly1𝐴)
3 mply1topmat.l . . . 4 𝐿 = (Base‘𝑄)
4 mply1topmat.p . . . 4 𝑃 = (Poly1𝑅)
5 mply1topmat.m . . . 4 · = ( ·𝑠𝑃)
6 mply1topmat.e . . . 4 𝐸 = (.g‘(mulGrp‘𝑃))
7 mply1topmat.y . . . 4 𝑌 = (var1𝑅)
8 mply1topmat.i . . . 4 𝐼 = (𝑝𝐿 ↦ (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑝)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
91, 2, 3, 4, 5, 6, 7, 8mply1topmatval 22698 . . 3 ((𝑁 ∈ Fin ∧ 𝑂𝐿) → (𝐼𝑂) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
1093adant2 1131 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝐼𝑂) = (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))))
11 mply1topmatcl.c . . 3 𝐶 = (𝑁 Mat 𝑃)
12 eqid 2730 . . 3 (Base‘𝑃) = (Base‘𝑃)
13 mply1topmatcl.b . . 3 𝐵 = (Base‘𝐶)
14 simp1 1136 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑁 ∈ Fin)
154fvexi 6875 . . . 4 𝑃 ∈ V
1615a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑃 ∈ V)
17 eqid 2730 . . . 4 (0g𝑃) = (0g𝑃)
184ply1ring 22139 . . . . . . 7 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
19 ringcmn 20198 . . . . . . 7 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
2018, 19syl 17 . . . . . 6 (𝑅 ∈ Ring → 𝑃 ∈ CMnd)
21203ad2ant2 1134 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑃 ∈ CMnd)
22213ad2ant1 1133 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ CMnd)
23 nn0ex 12455 . . . . 5 0 ∈ V
2423a1i 11 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) → ℕ0 ∈ V)
254ply1lmod 22143 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ LMod)
26253ad2ant2 1134 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑃 ∈ LMod)
27263ad2ant1 1133 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) → 𝑃 ∈ LMod)
2827adantr 480 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑃 ∈ LMod)
29 eqid 2730 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
30 eqid 2730 . . . . . . . 8 (Base‘𝐴) = (Base‘𝐴)
31 simpl2 1193 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑖𝑁)
32 simpl3 1194 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑗𝑁)
33 simpl13 1251 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑂𝐿)
34 eqid 2730 . . . . . . . . . . 11 (coe1𝑂) = (coe1𝑂)
3534, 3, 2, 30coe1f 22103 . . . . . . . . . 10 (𝑂𝐿 → (coe1𝑂):ℕ0⟶(Base‘𝐴))
3633, 35syl 17 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → (coe1𝑂):ℕ0⟶(Base‘𝐴))
37 simpr 484 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
3836, 37ffvelcdmd 7060 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → ((coe1𝑂)‘𝑘) ∈ (Base‘𝐴))
391, 29, 30, 31, 32, 38matecld 22320 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘𝑅))
404ply1sca 22144 . . . . . . . . . . . 12 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑃))
4140eqcomd 2736 . . . . . . . . . . 11 (𝑅 ∈ Ring → (Scalar‘𝑃) = 𝑅)
42413ad2ant2 1134 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (Scalar‘𝑃) = 𝑅)
4342fveq2d 6865 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
44433ad2ant1 1133 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
4544adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → (Base‘(Scalar‘𝑃)) = (Base‘𝑅))
4639, 45eleqtrrd 2832 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘(Scalar‘𝑃)))
47 eqid 2730 . . . . . . . 8 (mulGrp‘𝑃) = (mulGrp‘𝑃)
4847, 12mgpbas 20061 . . . . . . 7 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
49183ad2ant2 1134 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑃 ∈ Ring)
5047ringmgp 20155 . . . . . . . . . 10 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
5149, 50syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (mulGrp‘𝑃) ∈ Mnd)
52513ad2ant1 1133 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) → (mulGrp‘𝑃) ∈ Mnd)
5352adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → (mulGrp‘𝑃) ∈ Mnd)
547, 4, 12vr1cl 22109 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑌 ∈ (Base‘𝑃))
55543ad2ant2 1134 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → 𝑌 ∈ (Base‘𝑃))
56553ad2ant1 1133 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) → 𝑌 ∈ (Base‘𝑃))
5756adantr 480 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → 𝑌 ∈ (Base‘𝑃))
5848, 6, 53, 37, 57mulgnn0cld 19034 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → (𝑘𝐸𝑌) ∈ (Base‘𝑃))
59 eqid 2730 . . . . . . 7 (Scalar‘𝑃) = (Scalar‘𝑃)
60 eqid 2730 . . . . . . 7 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
6112, 59, 5, 60lmodvscl 20791 . . . . . 6 ((𝑃 ∈ LMod ∧ (𝑖((coe1𝑂)‘𝑘)𝑗) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑘𝐸𝑌) ∈ (Base‘𝑃)) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
6228, 46, 58, 61syl3anc 1373 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) ∧ 𝑘 ∈ ℕ0) → ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)) ∈ (Base‘𝑃))
6362fmpttd 7090 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))):ℕ0⟶(Base‘𝑃))
641, 2, 3, 4, 5, 6, 7mply1topmatcllem 22697 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) → (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))) finSupp (0g𝑃))
6512, 17, 22, 24, 63, 64gsumcl 19852 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) ∧ 𝑖𝑁𝑗𝑁) → (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌)))) ∈ (Base‘𝑃))
6611, 12, 13, 14, 16, 65matbas2d 22317 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝑖𝑁, 𝑗𝑁 ↦ (𝑃 Σg (𝑘 ∈ ℕ0 ↦ ((𝑖((coe1𝑂)‘𝑘)𝑗) · (𝑘𝐸𝑌))))) ∈ 𝐵)
6710, 66eqeltrd 2829 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑂𝐿) → (𝐼𝑂) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3450  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  cmpo 7392  Fincfn 8921  0cn0 12449  Basecbs 17186  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668  .gcmg 19006  CMndccmn 19717  mulGrpcmgp 20056  Ringcrg 20149  LModclmod 20773  var1cv1 22067  Poly1cpl1 22068  coe1cco1 22069   Mat cmat 22301
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-dsmm 21648  df-frlm 21663  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-mat 22302
This theorem is referenced by:  mp2pm2mplem5  22704  mp2pm2mp  22705  pm2mpfo  22708
  Copyright terms: Public domain W3C validator