Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwndiff Structured version   Visualization version   GIF version

Theorem btwndiff 33548
Description: There is always a 𝑐 distinct from 𝐵 such that 𝐵 lies between 𝐴 and 𝑐. Theorem 3.14 of [Schwabhauser] p. 32. (Contributed by Scott Fenton, 24-Sep-2013.)
Assertion
Ref Expression
btwndiff ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝐵𝑐))
Distinct variable groups:   𝐴,𝑐   𝐵,𝑐   𝑁,𝑐

Proof of Theorem btwndiff
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 axlowdim1 26759 . . 3 (𝑁 ∈ ℕ → ∃𝑢 ∈ (𝔼‘𝑁)∃𝑣 ∈ (𝔼‘𝑁)𝑢𝑣)
213ad2ant1 1130 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ∃𝑢 ∈ (𝔼‘𝑁)∃𝑣 ∈ (𝔼‘𝑁)𝑢𝑣)
3 simp11 1200 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁)) ∧ 𝑢𝑣) → 𝑁 ∈ ℕ)
4 simp12 1201 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁)) ∧ 𝑢𝑣) → 𝐴 ∈ (𝔼‘𝑁))
5 simp13 1202 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁)) ∧ 𝑢𝑣) → 𝐵 ∈ (𝔼‘𝑁))
6 simp2l 1196 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁)) ∧ 𝑢𝑣) → 𝑢 ∈ (𝔼‘𝑁))
7 simp2r 1197 . . . . . 6 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁)) ∧ 𝑢𝑣) → 𝑣 ∈ (𝔼‘𝑁))
8 axsegcon 26727 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁))) → ∃𝑐 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑢, 𝑣⟩))
93, 4, 5, 6, 7, 8syl122anc 1376 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁)) ∧ 𝑢𝑣) → ∃𝑐 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑢, 𝑣⟩))
10 simpl11 1245 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁)) ∧ 𝑢𝑣) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
11 simpl13 1247 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁)) ∧ 𝑢𝑣) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
12 simpr 488 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁)) ∧ 𝑢𝑣) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑐 ∈ (𝔼‘𝑁))
13 simpl2l 1223 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁)) ∧ 𝑢𝑣) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑢 ∈ (𝔼‘𝑁))
14 simpl2r 1224 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁)) ∧ 𝑢𝑣) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑣 ∈ (𝔼‘𝑁))
15 cgrdegen 33525 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁))) → (⟨𝐵, 𝑐⟩Cgr⟨𝑢, 𝑣⟩ → (𝐵 = 𝑐𝑢 = 𝑣)))
1610, 11, 12, 13, 14, 15syl122anc 1376 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁)) ∧ 𝑢𝑣) ∧ 𝑐 ∈ (𝔼‘𝑁)) → (⟨𝐵, 𝑐⟩Cgr⟨𝑢, 𝑣⟩ → (𝐵 = 𝑐𝑢 = 𝑣)))
17 biimp 218 . . . . . . . . . . . 12 ((𝐵 = 𝑐𝑢 = 𝑣) → (𝐵 = 𝑐𝑢 = 𝑣))
1817necon3d 3035 . . . . . . . . . . 11 ((𝐵 = 𝑐𝑢 = 𝑣) → (𝑢𝑣𝐵𝑐))
1918com12 32 . . . . . . . . . 10 (𝑢𝑣 → ((𝐵 = 𝑐𝑢 = 𝑣) → 𝐵𝑐))
20193ad2ant3 1132 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁)) ∧ 𝑢𝑣) → ((𝐵 = 𝑐𝑢 = 𝑣) → 𝐵𝑐))
2120adantr 484 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁)) ∧ 𝑢𝑣) ∧ 𝑐 ∈ (𝔼‘𝑁)) → ((𝐵 = 𝑐𝑢 = 𝑣) → 𝐵𝑐))
2216, 21syld 47 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁)) ∧ 𝑢𝑣) ∧ 𝑐 ∈ (𝔼‘𝑁)) → (⟨𝐵, 𝑐⟩Cgr⟨𝑢, 𝑣⟩ → 𝐵𝑐))
2322anim2d 614 . . . . . 6 ((((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁)) ∧ 𝑢𝑣) ∧ 𝑐 ∈ (𝔼‘𝑁)) → ((𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑢, 𝑣⟩) → (𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝐵𝑐)))
2423reximdva 3267 . . . . 5 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁)) ∧ 𝑢𝑣) → (∃𝑐 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑢, 𝑣⟩) → ∃𝑐 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝐵𝑐)))
259, 24mpd 15 . . . 4 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁)) ∧ 𝑢𝑣) → ∃𝑐 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝐵𝑐))
26253exp 1116 . . 3 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ((𝑢 ∈ (𝔼‘𝑁) ∧ 𝑣 ∈ (𝔼‘𝑁)) → (𝑢𝑣 → ∃𝑐 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝐵𝑐))))
2726rexlimdvv 3286 . 2 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → (∃𝑢 ∈ (𝔼‘𝑁)∃𝑣 ∈ (𝔼‘𝑁)𝑢𝑣 → ∃𝑐 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝐵𝑐)))
282, 27mpd 15 1 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝐵𝑐))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2115  wne 3014  wrex 3134  cop 4557   class class class wbr 5053  cfv 6344  cn 11637  𝔼cee 26688   Btwn cbtwn 26689  Cgrccgr 26690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5177  ax-sep 5190  ax-nul 5197  ax-pow 5254  ax-pr 5318  ax-un 7456  ax-inf2 9102  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3483  df-sbc 3760  df-csb 3868  df-dif 3923  df-un 3925  df-in 3927  df-ss 3937  df-pss 3939  df-nul 4278  df-if 4452  df-pw 4525  df-sn 4552  df-pr 4554  df-tp 4556  df-op 4558  df-uni 4826  df-int 4864  df-iun 4908  df-br 5054  df-opab 5116  df-mpt 5134  df-tr 5160  df-id 5448  df-eprel 5453  df-po 5462  df-so 5463  df-fr 5502  df-se 5503  df-we 5504  df-xp 5549  df-rel 5550  df-cnv 5551  df-co 5552  df-dm 5553  df-rn 5554  df-res 5555  df-ima 5556  df-pred 6136  df-ord 6182  df-on 6183  df-lim 6184  df-suc 6185  df-iota 6303  df-fun 6346  df-fn 6347  df-f 6348  df-f1 6349  df-fo 6350  df-f1o 6351  df-fv 6352  df-isom 6353  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7576  df-1st 7685  df-2nd 7686  df-wrecs 7944  df-recs 8005  df-rdg 8043  df-1o 8099  df-oadd 8103  df-er 8286  df-map 8405  df-en 8507  df-dom 8508  df-sdom 8509  df-fin 8510  df-sup 8904  df-oi 8972  df-card 9366  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11700  df-3 11701  df-n0 11898  df-z 11982  df-uz 12244  df-rp 12390  df-ico 12744  df-icc 12745  df-fz 12898  df-fzo 13041  df-seq 13377  df-exp 13438  df-hash 13699  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-ee 26691  df-btwn 26692  df-cgr 26693
This theorem is referenced by:  ifscgr  33565  cgrxfr  33576  btwnconn3  33624  broutsideof3  33647
  Copyright terms: Public domain W3C validator