| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprr2 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprr2 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | ad2antll 729 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8068 icodiamlt 15337 psgnunilem2 19400 haust1 23260 cnhaus 23262 isreg2 23285 llynlly 23385 restnlly 23390 llyrest 23393 llyidm 23396 nllyidm 23397 cldllycmp 23403 txlly 23544 txnlly 23545 pthaus 23546 txhaus 23555 txkgen 23560 xkohaus 23561 xkococnlem 23567 cmetcaulem 25208 itg2add 25680 ulmdvlem3 26331 nosupprefixmo 27632 noinfprefixmo 27633 etasslt 27747 scutbdaybnd 27749 scutbdaybnd2 27750 addsproplem6 27910 negsproplem6 27968 mulsproplem13 28060 mulsproplem14 28061 mulsprop 28062 ax5seglem6 28905 n4cyclfrgr 30261 connpconn 35247 cvmlift3lem2 35332 cvmlift3lem8 35338 broutsideof3 36139 unblimceq0 36520 paddasslem10 39847 lhpexle2lem 40027 lhpexle3lem 40029 stoweidlem35 46052 stoweidlem56 46073 stoweidlem59 46076 pgn4cyclex 48136 2arwcat 49611 |
| Copyright terms: Public domain | W3C validator |