Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simprr2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprr2 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1134 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | ad2antll 728 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1086 |
This theorem is referenced by: icodiamlt 14856 psgnunilem2 18704 haust1 22066 cnhaus 22068 isreg2 22091 llynlly 22191 restnlly 22196 llyrest 22199 llyidm 22202 nllyidm 22203 cldllycmp 22209 txlly 22350 txnlly 22351 pthaus 22352 txhaus 22361 txkgen 22366 xkohaus 22367 xkococnlem 22373 cmetcaulem 24002 itg2add 24473 ulmdvlem3 25110 ax5seglem6 26841 n4cyclfrgr 28189 connpconn 32726 cvmlift3lem2 32811 cvmlift3lem8 32817 poxp2 33358 poxp3 33364 nosupprefixmo 33501 noinfprefixmo 33502 etasslt 33603 scutbdaybnd 33605 scutbdaybnd2 33606 broutsideof3 34012 unblimceq0 34271 paddasslem10 37440 lhpexle2lem 37620 lhpexle3lem 37622 stoweidlem35 43088 stoweidlem56 43109 stoweidlem59 43112 |
Copyright terms: Public domain | W3C validator |