![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprr2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprr2 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1168 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | ad2antll 721 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 386 df-3an 1110 |
This theorem is referenced by: icodiamlt 14515 psgnunilem2 18228 haust1 21485 cnhaus 21487 isreg2 21510 llynlly 21609 restnlly 21614 llyrest 21617 llyidm 21620 nllyidm 21621 cldllycmp 21627 txlly 21768 txnlly 21769 pthaus 21770 txhaus 21779 txkgen 21784 xkohaus 21785 xkococnlem 21791 cmetcaulem 23414 itg2add 23867 ulmdvlem3 24497 ax5seglem6 26171 n4cyclfrgr 27640 connpconn 31734 cvmlift3lem2 31819 cvmlift3lem8 31825 noprefixmo 32361 scutbdaybnd 32434 broutsideof3 32746 unblimceq0 33006 paddasslem10 35850 lhpexle2lem 36030 lhpexle3lem 36032 stoweidlem35 40995 stoweidlem56 41016 stoweidlem59 41019 |
Copyright terms: Public domain | W3C validator |