MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprr2 Structured version   Visualization version   GIF version

Theorem simprr2 1223
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Assertion
Ref Expression
simprr2 ((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)

Proof of Theorem simprr2
StepHypRef Expression
1 simp2 1137 . 2 ((𝜑𝜓𝜒) → 𝜓)
21ad2antll 729 1 ((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp2  8147  icodiamlt  15459  psgnunilem2  19481  haust1  23295  cnhaus  23297  isreg2  23320  llynlly  23420  restnlly  23425  llyrest  23428  llyidm  23431  nllyidm  23432  cldllycmp  23438  txlly  23579  txnlly  23580  pthaus  23581  txhaus  23590  txkgen  23595  xkohaus  23596  xkococnlem  23602  cmetcaulem  25245  itg2add  25717  ulmdvlem3  26368  nosupprefixmo  27669  noinfprefixmo  27670  etasslt  27782  scutbdaybnd  27784  scutbdaybnd2  27785  addsproplem6  27938  negsproplem6  27996  mulsproplem13  28088  mulsproplem14  28089  mulsprop  28090  ax5seglem6  28918  n4cyclfrgr  30277  connpconn  35262  cvmlift3lem2  35347  cvmlift3lem8  35353  broutsideof3  36149  unblimceq0  36530  paddasslem10  39853  lhpexle2lem  40033  lhpexle3lem  40035  stoweidlem35  46031  stoweidlem56  46052  stoweidlem59  46055  2arwcat  49444
  Copyright terms: Public domain W3C validator