Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simprr2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprr2 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | ad2antll 726 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: icodiamlt 15147 psgnunilem2 19103 haust1 22503 cnhaus 22505 isreg2 22528 llynlly 22628 restnlly 22633 llyrest 22636 llyidm 22639 nllyidm 22640 cldllycmp 22646 txlly 22787 txnlly 22788 pthaus 22789 txhaus 22798 txkgen 22803 xkohaus 22804 xkococnlem 22810 cmetcaulem 24452 itg2add 24924 ulmdvlem3 25561 ax5seglem6 27302 n4cyclfrgr 28655 connpconn 33197 cvmlift3lem2 33282 cvmlift3lem8 33288 poxp2 33790 poxp3 33796 nosupprefixmo 33903 noinfprefixmo 33904 etasslt 34007 scutbdaybnd 34009 scutbdaybnd2 34010 broutsideof3 34428 unblimceq0 34687 paddasslem10 37843 lhpexle2lem 38023 lhpexle3lem 38025 stoweidlem35 43576 stoweidlem56 43597 stoweidlem59 43600 |
Copyright terms: Public domain | W3C validator |