![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprr2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprr2 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | ad2antll 727 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: poxp2 8128 icodiamlt 15381 psgnunilem2 19362 haust1 22855 cnhaus 22857 isreg2 22880 llynlly 22980 restnlly 22985 llyrest 22988 llyidm 22991 nllyidm 22992 cldllycmp 22998 txlly 23139 txnlly 23140 pthaus 23141 txhaus 23150 txkgen 23155 xkohaus 23156 xkococnlem 23162 cmetcaulem 24804 itg2add 25276 ulmdvlem3 25913 nosupprefixmo 27200 noinfprefixmo 27201 etasslt 27311 scutbdaybnd 27313 scutbdaybnd2 27314 addsproplem6 27455 negsproplem6 27504 mulsproplem13 27581 mulsproplem14 27582 mulsprop 27583 ax5seglem6 28189 n4cyclfrgr 29541 connpconn 34221 cvmlift3lem2 34306 cvmlift3lem8 34312 broutsideof3 35093 unblimceq0 35378 paddasslem10 38695 lhpexle2lem 38875 lhpexle3lem 38877 stoweidlem35 44741 stoweidlem56 44762 stoweidlem59 44765 |
Copyright terms: Public domain | W3C validator |