Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > simprr2 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprr2 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 1135 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
2 | 1 | ad2antll 725 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: icodiamlt 15075 psgnunilem2 19018 haust1 22411 cnhaus 22413 isreg2 22436 llynlly 22536 restnlly 22541 llyrest 22544 llyidm 22547 nllyidm 22548 cldllycmp 22554 txlly 22695 txnlly 22696 pthaus 22697 txhaus 22706 txkgen 22711 xkohaus 22712 xkococnlem 22718 cmetcaulem 24357 itg2add 24829 ulmdvlem3 25466 ax5seglem6 27205 n4cyclfrgr 28556 connpconn 33097 cvmlift3lem2 33182 cvmlift3lem8 33188 poxp2 33717 poxp3 33723 nosupprefixmo 33830 noinfprefixmo 33831 etasslt 33934 scutbdaybnd 33936 scutbdaybnd2 33937 broutsideof3 34355 unblimceq0 34614 paddasslem10 37770 lhpexle2lem 37950 lhpexle3lem 37952 stoweidlem35 43466 stoweidlem56 43487 stoweidlem59 43490 |
Copyright terms: Public domain | W3C validator |