| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprr2 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprr2 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp2 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜓) | |
| 2 | 1 | ad2antll 729 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: poxp2 8082 icodiamlt 15355 psgnunilem2 19417 haust1 23277 cnhaus 23279 isreg2 23302 llynlly 23402 restnlly 23407 llyrest 23410 llyidm 23413 nllyidm 23414 cldllycmp 23420 txlly 23561 txnlly 23562 pthaus 23563 txhaus 23572 txkgen 23577 xkohaus 23578 xkococnlem 23584 cmetcaulem 25225 itg2add 25697 ulmdvlem3 26348 nosupprefixmo 27649 noinfprefixmo 27650 etasslt 27764 scutbdaybnd 27766 scutbdaybnd2 27767 addsproplem6 27927 negsproplem6 27985 mulsproplem13 28077 mulsproplem14 28078 mulsprop 28079 ax5seglem6 28923 n4cyclfrgr 30282 connpconn 35290 cvmlift3lem2 35375 cvmlift3lem8 35381 broutsideof3 36181 unblimceq0 36562 paddasslem10 39938 lhpexle2lem 40118 lhpexle3lem 40120 stoweidlem35 46147 stoweidlem56 46168 stoweidlem59 46171 pgn4cyclex 48240 2arwcat 49715 |
| Copyright terms: Public domain | W3C validator |