MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprr2 Structured version   Visualization version   GIF version

Theorem simprr2 1223
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Assertion
Ref Expression
simprr2 ((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)

Proof of Theorem simprr2
StepHypRef Expression
1 simp2 1137 . 2 ((𝜑𝜓𝜒) → 𝜓)
21ad2antll 729 1 ((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  poxp2  8125  icodiamlt  15411  psgnunilem2  19432  haust1  23246  cnhaus  23248  isreg2  23271  llynlly  23371  restnlly  23376  llyrest  23379  llyidm  23382  nllyidm  23383  cldllycmp  23389  txlly  23530  txnlly  23531  pthaus  23532  txhaus  23541  txkgen  23546  xkohaus  23547  xkococnlem  23553  cmetcaulem  25195  itg2add  25667  ulmdvlem3  26318  nosupprefixmo  27619  noinfprefixmo  27620  etasslt  27732  scutbdaybnd  27734  scutbdaybnd2  27735  addsproplem6  27888  negsproplem6  27946  mulsproplem13  28038  mulsproplem14  28039  mulsprop  28040  ax5seglem6  28868  n4cyclfrgr  30227  connpconn  35229  cvmlift3lem2  35314  cvmlift3lem8  35320  broutsideof3  36121  unblimceq0  36502  paddasslem10  39830  lhpexle2lem  40010  lhpexle3lem  40012  stoweidlem35  46040  stoweidlem56  46061  stoweidlem59  46064  pgn4cyclex  48120  2arwcat  49593
  Copyright terms: Public domain W3C validator