MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprr2 Structured version   Visualization version   GIF version

Theorem simprr2 1220
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Assertion
Ref Expression
simprr2 ((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)

Proof of Theorem simprr2
StepHypRef Expression
1 simp2 1135 . 2 ((𝜑𝜓𝜒) → 𝜓)
21ad2antll 725 1 ((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-3an 1087
This theorem is referenced by:  icodiamlt  15075  psgnunilem2  19018  haust1  22411  cnhaus  22413  isreg2  22436  llynlly  22536  restnlly  22541  llyrest  22544  llyidm  22547  nllyidm  22548  cldllycmp  22554  txlly  22695  txnlly  22696  pthaus  22697  txhaus  22706  txkgen  22711  xkohaus  22712  xkococnlem  22718  cmetcaulem  24357  itg2add  24829  ulmdvlem3  25466  ax5seglem6  27205  n4cyclfrgr  28556  connpconn  33097  cvmlift3lem2  33182  cvmlift3lem8  33188  poxp2  33717  poxp3  33723  nosupprefixmo  33830  noinfprefixmo  33831  etasslt  33934  scutbdaybnd  33936  scutbdaybnd2  33937  broutsideof3  34355  unblimceq0  34614  paddasslem10  37770  lhpexle2lem  37950  lhpexle3lem  37952  stoweidlem35  43466  stoweidlem56  43487  stoweidlem59  43490
  Copyright terms: Public domain W3C validator