MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutbdaybnd Structured version   Visualization version   GIF version

Theorem scutbdaybnd 27784
Description: An upper bound on the birthday of a surreal cut. (Contributed by Scott Fenton, 10-Aug-2024.)
Assertion
Ref Expression
scutbdaybnd ((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑂)

Proof of Theorem scutbdaybnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etasslt 27782 . 2 ((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))
2 simpl1 1192 . . . . 5 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → 𝐴 <<s 𝐵)
3 scutbday 27773 . . . . 5 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
42, 3syl 17 . . . 4 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
5 bdayfn 27742 . . . . . 6 bday Fn No
6 ssrab2 4060 . . . . . 6 {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No
7 sneq 4616 . . . . . . . . 9 (𝑦 = 𝑥 → {𝑦} = {𝑥})
87breq2d 5136 . . . . . . . 8 (𝑦 = 𝑥 → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {𝑥}))
97breq1d 5134 . . . . . . . 8 (𝑦 = 𝑥 → ({𝑦} <<s 𝐵 ↔ {𝑥} <<s 𝐵))
108, 9anbi12d 632 . . . . . . 7 (𝑦 = 𝑥 → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)))
11 simprl 770 . . . . . . 7 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → 𝑥 No )
12 simprr1 1222 . . . . . . . 8 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → 𝐴 <<s {𝑥})
13 simprr2 1223 . . . . . . . 8 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → {𝑥} <<s 𝐵)
1412, 13jca 511 . . . . . . 7 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))
1510, 11, 14elrabd 3678 . . . . . 6 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → 𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
16 fnfvima 7230 . . . . . 6 (( bday Fn No ∧ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No 𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday 𝑥) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
175, 6, 15, 16mp3an12i 1467 . . . . 5 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → ( bday 𝑥) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
18 intss1 4944 . . . . 5 (( bday 𝑥) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑥))
1917, 18syl 17 . . . 4 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑥))
204, 19eqsstrd 3998 . . 3 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑥))
21 simprr3 1224 . . 3 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → ( bday 𝑥) ⊆ 𝑂)
2220, 21sstrd 3974 . 2 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑂)
231, 22rexlimddv 3148 1 ((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  {crab 3420  cun 3929  wss 3931  {csn 4606   cint 4927   class class class wbr 5124  cima 5662  Oncon0 6357   Fn wfn 6531  cfv 6536  (class class class)co 7410   No csur 27608   bday cbday 27610   <<s csslt 27749   |s cscut 27751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1o 8485  df-2o 8486  df-no 27611  df-slt 27612  df-bday 27613  df-sslt 27750  df-scut 27752
This theorem is referenced by:  madebdayim  27856  addsbday  27981  negsbdaylem  28019  onscutlt  28222  onsiso  28226  bdayon  28230  n0sbday  28301  bdayn0p1  28315  zs12bday  28400
  Copyright terms: Public domain W3C validator