MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutbdaybnd Structured version   Visualization version   GIF version

Theorem scutbdaybnd 27154
Description: An upper bound on the birthday of a surreal cut. (Contributed by Scott Fenton, 10-Aug-2024.)
Assertion
Ref Expression
scutbdaybnd ((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑂)

Proof of Theorem scutbdaybnd
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etasslt 27152 . 2 ((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))
2 simpl1 1191 . . . . 5 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → 𝐴 <<s 𝐵)
3 scutbday 27143 . . . . 5 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
42, 3syl 17 . . . 4 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
5 bdayfn 27113 . . . . . 6 bday Fn No
6 ssrab2 4037 . . . . . 6 {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No
7 sneq 4596 . . . . . . . . 9 (𝑦 = 𝑥 → {𝑦} = {𝑥})
87breq2d 5117 . . . . . . . 8 (𝑦 = 𝑥 → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {𝑥}))
97breq1d 5115 . . . . . . . 8 (𝑦 = 𝑥 → ({𝑦} <<s 𝐵 ↔ {𝑥} <<s 𝐵))
108, 9anbi12d 631 . . . . . . 7 (𝑦 = 𝑥 → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)))
11 simprl 769 . . . . . . 7 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → 𝑥 No )
12 simprr1 1221 . . . . . . . 8 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → 𝐴 <<s {𝑥})
13 simprr2 1222 . . . . . . . 8 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → {𝑥} <<s 𝐵)
1412, 13jca 512 . . . . . . 7 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))
1510, 11, 14elrabd 3647 . . . . . 6 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → 𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
16 fnfvima 7183 . . . . . 6 (( bday Fn No ∧ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No 𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday 𝑥) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
175, 6, 15, 16mp3an12i 1465 . . . . 5 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → ( bday 𝑥) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
18 intss1 4924 . . . . 5 (( bday 𝑥) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑥))
1917, 18syl 17 . . . 4 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑥))
204, 19eqsstrd 3982 . . 3 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑥))
21 simprr3 1223 . . 3 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → ( bday 𝑥) ⊆ 𝑂)
2220, 21sstrd 3954 . 2 (((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ 𝑂))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑂)
231, 22rexlimddv 3158 1 ((𝐴 <<s 𝐵𝑂 ∈ On ∧ ( bday “ (𝐴𝐵)) ⊆ 𝑂) → ( bday ‘(𝐴 |s 𝐵)) ⊆ 𝑂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  {crab 3407  cun 3908  wss 3910  {csn 4586   cint 4907   class class class wbr 5105  cima 5636  Oncon0 6317   Fn wfn 6491  cfv 6496  (class class class)co 7357   No csur 26988   bday cbday 26990   <<s csslt 27120   |s cscut 27122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1o 8412  df-2o 8413  df-no 26991  df-slt 26992  df-bday 26993  df-sslt 27121  df-scut 27123
This theorem is referenced by:  madebdayim  27217
  Copyright terms: Public domain W3C validator