MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutbdaybnd2 Structured version   Visualization version   GIF version

Theorem scutbdaybnd2 27728
Description: An upper bound on the birthday of a surreal cut. (Contributed by Scott Fenton, 10-Dec-2021.)
Assertion
Ref Expression
scutbdaybnd2 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))

Proof of Theorem scutbdaybnd2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etasslt2 27726 . 2 (𝐴 <<s 𝐵 → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
2 scutbday 27716 . . . . . 6 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
32adantr 480 . . . . 5 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
4 bdayfn 27685 . . . . . . 7 bday Fn No
5 ssrab2 4043 . . . . . . 7 {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No
6 simprl 770 . . . . . . . 8 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → 𝑥 No )
7 simprr1 1222 . . . . . . . . 9 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → 𝐴 <<s {𝑥})
8 simprr2 1223 . . . . . . . . 9 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → {𝑥} <<s 𝐵)
97, 8jca 511 . . . . . . . 8 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))
10 sneq 4599 . . . . . . . . . . 11 (𝑦 = 𝑥 → {𝑦} = {𝑥})
1110breq2d 5119 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {𝑥}))
1210breq1d 5117 . . . . . . . . . 10 (𝑦 = 𝑥 → ({𝑦} <<s 𝐵 ↔ {𝑥} <<s 𝐵))
1311, 12anbi12d 632 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)))
1413elrab 3659 . . . . . . . 8 (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)))
156, 9, 14sylanbrc 583 . . . . . . 7 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → 𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
16 fnfvima 7207 . . . . . . 7 (( bday Fn No ∧ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No 𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday 𝑥) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
174, 5, 15, 16mp3an12i 1467 . . . . . 6 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → ( bday 𝑥) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
18 intss1 4927 . . . . . 6 (( bday 𝑥) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑥))
1917, 18syl 17 . . . . 5 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑥))
203, 19eqsstrd 3981 . . . 4 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑥))
21 simprr3 1224 . . . 4 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵)))
2220, 21sstrd 3957 . . 3 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))
2322rexlimdvaa 3135 . 2 (𝐴 <<s 𝐵 → (∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ suc ( bday “ (𝐴𝐵))))
241, 23mpd 15 1 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wrex 3053  {crab 3405  cun 3912  wss 3914  {csn 4589   cuni 4871   cint 4910   class class class wbr 5107  cima 5641  suc csuc 6334   Fn wfn 6506  cfv 6511  (class class class)co 7387   No csur 27551   bday cbday 27553   <<s csslt 27692   |s cscut 27694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1o 8434  df-2o 8435  df-no 27554  df-slt 27555  df-bday 27556  df-sslt 27693  df-scut 27695
This theorem is referenced by:  scutbdaybnd2lim  27729  bday1s  27743
  Copyright terms: Public domain W3C validator