MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scutbdaybnd2 Structured version   Visualization version   GIF version

Theorem scutbdaybnd2 27748
Description: An upper bound on the birthday of a surreal cut. (Contributed by Scott Fenton, 10-Dec-2021.)
Assertion
Ref Expression
scutbdaybnd2 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))

Proof of Theorem scutbdaybnd2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 etasslt2 27746 . 2 (𝐴 <<s 𝐵 → ∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))
2 scutbday 27736 . . . . . 6 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
32adantr 480 . . . . 5 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → ( bday ‘(𝐴 |s 𝐵)) = ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
4 bdayfn 27705 . . . . . . 7 bday Fn No
5 ssrab2 4075 . . . . . . 7 {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No
6 simprl 770 . . . . . . . 8 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → 𝑥 No )
7 simprr1 1219 . . . . . . . . 9 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → 𝐴 <<s {𝑥})
8 simprr2 1220 . . . . . . . . 9 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → {𝑥} <<s 𝐵)
97, 8jca 511 . . . . . . . 8 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵))
10 sneq 4639 . . . . . . . . . . 11 (𝑦 = 𝑥 → {𝑦} = {𝑥})
1110breq2d 5160 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝐴 <<s {𝑦} ↔ 𝐴 <<s {𝑥}))
1210breq1d 5158 . . . . . . . . . 10 (𝑦 = 𝑥 → ({𝑦} <<s 𝐵 ↔ {𝑥} <<s 𝐵))
1311, 12anbi12d 631 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵) ↔ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)))
1413elrab 3682 . . . . . . . 8 (𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ↔ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵)))
156, 9, 14sylanbrc 582 . . . . . . 7 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → 𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)})
16 fnfvima 7245 . . . . . . 7 (( bday Fn No ∧ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)} ⊆ No 𝑥 ∈ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday 𝑥) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
174, 5, 15, 16mp3an12i 1462 . . . . . 6 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → ( bday 𝑥) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}))
18 intss1 4966 . . . . . 6 (( bday 𝑥) ∈ ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑥))
1917, 18syl 17 . . . . 5 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → ( bday “ {𝑦 No ∣ (𝐴 <<s {𝑦} ∧ {𝑦} <<s 𝐵)}) ⊆ ( bday 𝑥))
203, 19eqsstrd 4018 . . . 4 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ ( bday 𝑥))
21 simprr3 1221 . . . 4 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵)))
2220, 21sstrd 3990 . . 3 ((𝐴 <<s 𝐵 ∧ (𝑥 No ∧ (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))
2322rexlimdvaa 3153 . 2 (𝐴 <<s 𝐵 → (∃𝑥 No (𝐴 <<s {𝑥} ∧ {𝑥} <<s 𝐵 ∧ ( bday 𝑥) ⊆ suc ( bday “ (𝐴𝐵))) → ( bday ‘(𝐴 |s 𝐵)) ⊆ suc ( bday “ (𝐴𝐵))))
241, 23mpd 15 1 (𝐴 <<s 𝐵 → ( bday ‘(𝐴 |s 𝐵)) ⊆ suc ( bday “ (𝐴𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wrex 3067  {crab 3429  cun 3945  wss 3947  {csn 4629   cuni 4908   cint 4949   class class class wbr 5148  cima 5681  suc csuc 6371   Fn wfn 6543  cfv 6548  (class class class)co 7420   No csur 27572   bday cbday 27574   <<s csslt 27712   |s cscut 27714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6372  df-on 6373  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1o 8486  df-2o 8487  df-no 27575  df-slt 27576  df-bday 27577  df-sslt 27713  df-scut 27715
This theorem is referenced by:  scutbdaybnd2lim  27749  bday1s  27763
  Copyright terms: Public domain W3C validator