![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprr3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprr3 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1135 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antll 727 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 df-3an 1086 |
This theorem is referenced by: el2xptp0 8039 poxp2 8146 ttrcltr 9739 icodiamlt 15414 psgnunilem2 19454 srgbinom 20175 psgndiflemA 21537 haust1 23286 cnhaus 23288 isreg2 23311 llynlly 23411 restnlly 23416 llyrest 23419 llyidm 23422 nllyidm 23423 cldllycmp 23429 txlly 23570 txnlly 23571 pthaus 23572 txhaus 23581 txkgen 23586 xkohaus 23587 xkococnlem 23593 cmetcaulem 25246 itg2add 25719 ulmdvlem3 26368 nosupprefixmo 27663 noinfprefixmo 27664 nosupno 27666 noinfno 27681 etasslt 27776 scutbdaybnd 27778 scutbdaybnd2 27779 addsproplem6 27921 negsproplem6 27975 mulsproplem13 28062 mulsproplem14 28063 mulsprop 28064 ax5seglem6 28801 fusgrfis 29199 wwlksnextfun 29765 umgr2wlkon 29817 connpconn 34915 cvmlift3lem2 35000 cvmlift3lem8 35006 ifscgr 35710 broutsideof3 35792 unblimceq0 36052 paddasslem10 39371 lhpexle2lem 39551 lhpexle3lem 39553 mpaaeu 42639 stoweidlem35 45486 stoweidlem56 45507 stoweidlem59 45510 |
Copyright terms: Public domain | W3C validator |