![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprr3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprr3 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antll 727 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1089 |
This theorem is referenced by: el2xptp0 8024 poxp2 8131 ttrcltr 9713 icodiamlt 15386 psgnunilem2 19404 srgbinom 20125 psgndiflemA 21373 haust1 23076 cnhaus 23078 isreg2 23101 llynlly 23201 restnlly 23206 llyrest 23209 llyidm 23212 nllyidm 23213 cldllycmp 23219 txlly 23360 txnlly 23361 pthaus 23362 txhaus 23371 txkgen 23376 xkohaus 23377 xkococnlem 23383 cmetcaulem 25029 itg2add 25501 ulmdvlem3 26138 nosupprefixmo 27427 noinfprefixmo 27428 nosupno 27430 noinfno 27445 etasslt 27539 scutbdaybnd 27541 scutbdaybnd2 27542 addsproplem6 27684 negsproplem6 27734 mulsproplem13 27811 mulsproplem14 27812 mulsprop 27813 ax5seglem6 28447 fusgrfis 28842 wwlksnextfun 29407 umgr2wlkon 29459 connpconn 34512 cvmlift3lem2 34597 cvmlift3lem8 34603 ifscgr 35308 broutsideof3 35390 unblimceq0 35686 paddasslem10 39003 lhpexle2lem 39183 lhpexle3lem 39185 mpaaeu 42194 stoweidlem35 45050 stoweidlem56 45071 stoweidlem59 45074 |
Copyright terms: Public domain | W3C validator |