![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprr3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprr3 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1137 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antll 729 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: el2xptp0 8060 poxp2 8167 ttrcltr 9754 icodiamlt 15471 psgnunilem2 19528 srgbinom 20249 psgndiflemA 21637 haust1 23376 cnhaus 23378 isreg2 23401 llynlly 23501 restnlly 23506 llyrest 23509 llyidm 23512 nllyidm 23513 cldllycmp 23519 txlly 23660 txnlly 23661 pthaus 23662 txhaus 23671 txkgen 23676 xkohaus 23677 xkococnlem 23683 cmetcaulem 25336 itg2add 25809 ulmdvlem3 26460 nosupprefixmo 27760 noinfprefixmo 27761 nosupno 27763 noinfno 27778 etasslt 27873 scutbdaybnd 27875 scutbdaybnd2 27876 addsproplem6 28022 negsproplem6 28080 mulsproplem13 28169 mulsproplem14 28170 mulsprop 28171 ax5seglem6 28964 fusgrfis 29362 wwlksnextfun 29928 umgr2wlkon 29980 connpconn 35220 cvmlift3lem2 35305 cvmlift3lem8 35311 ifscgr 36026 broutsideof3 36108 unblimceq0 36490 paddasslem10 39812 lhpexle2lem 39992 lhpexle3lem 39994 mpaaeu 43139 stoweidlem35 45991 stoweidlem56 46012 stoweidlem59 46015 |
Copyright terms: Public domain | W3C validator |