![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprr3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprr3 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1136 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antll 728 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: el2xptp0 8034 poxp2 8142 ttrcltr 9731 icodiamlt 15406 psgnunilem2 19441 srgbinom 20162 psgndiflemA 21520 haust1 23243 cnhaus 23245 isreg2 23268 llynlly 23368 restnlly 23373 llyrest 23376 llyidm 23379 nllyidm 23380 cldllycmp 23386 txlly 23527 txnlly 23528 pthaus 23529 txhaus 23538 txkgen 23543 xkohaus 23544 xkococnlem 23550 cmetcaulem 25203 itg2add 25676 ulmdvlem3 26325 nosupprefixmo 27620 noinfprefixmo 27621 nosupno 27623 noinfno 27638 etasslt 27733 scutbdaybnd 27735 scutbdaybnd2 27736 addsproplem6 27878 negsproplem6 27932 mulsproplem13 28015 mulsproplem14 28016 mulsprop 28017 ax5seglem6 28732 fusgrfis 29130 wwlksnextfun 29696 umgr2wlkon 29748 connpconn 34781 cvmlift3lem2 34866 cvmlift3lem8 34872 ifscgr 35576 broutsideof3 35658 unblimceq0 35918 paddasslem10 39239 lhpexle2lem 39419 lhpexle3lem 39421 mpaaeu 42496 stoweidlem35 45346 stoweidlem56 45367 stoweidlem59 45370 |
Copyright terms: Public domain | W3C validator |