![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprr3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprr3 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1118 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antll 716 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 388 df-3an 1070 |
This theorem is referenced by: el2xptp0 7545 icodiamlt 14650 psgnunilem2 18379 srgbinom 19012 psgndiflemA 20441 haust1 21658 cnhaus 21660 isreg2 21683 llynlly 21783 restnlly 21788 llyrest 21791 llyidm 21794 nllyidm 21795 cldllycmp 21801 txlly 21942 txnlly 21943 pthaus 21944 txhaus 21953 txkgen 21958 xkohaus 21959 xkococnlem 21965 cmetcaulem 23588 itg2add 24057 ulmdvlem3 24687 ax5seglem6 26417 fusgrfis 26809 wwlksnextfun 27383 wwlksnextfunOLD 27388 umgr2wlkon 27450 connpconn 32057 cvmlift3lem2 32142 cvmlift3lem8 32148 noprefixmo 32693 nosupno 32694 scutbdaybnd 32766 ifscgr 32996 broutsideof3 33078 unblimceq0 33336 paddasslem10 36388 lhpexle2lem 36568 lhpexle3lem 36570 mpaaeu 39124 stoweidlem35 41730 stoweidlem56 41751 stoweidlem59 41754 |
Copyright terms: Public domain | W3C validator |