| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprr3 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprr3 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | ad2antll 729 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: el2xptp0 8015 poxp2 8122 ttrcltr 9669 icodiamlt 15404 psgnunilem2 19425 srgbinom 20140 psgndiflemA 21510 haust1 23239 cnhaus 23241 isreg2 23264 llynlly 23364 restnlly 23369 llyrest 23372 llyidm 23375 nllyidm 23376 cldllycmp 23382 txlly 23523 txnlly 23524 pthaus 23525 txhaus 23534 txkgen 23539 xkohaus 23540 xkococnlem 23546 cmetcaulem 25188 itg2add 25660 ulmdvlem3 26311 nosupprefixmo 27612 noinfprefixmo 27613 nosupno 27615 noinfno 27630 etasslt 27725 scutbdaybnd 27727 scutbdaybnd2 27728 addsproplem6 27881 negsproplem6 27939 mulsproplem13 28031 mulsproplem14 28032 mulsprop 28033 ax5seglem6 28861 fusgrfis 29257 wwlksnextfun 29828 umgr2wlkon 29880 connpconn 35222 cvmlift3lem2 35307 cvmlift3lem8 35313 ifscgr 36032 broutsideof3 36114 unblimceq0 36495 paddasslem10 39823 lhpexle2lem 40003 lhpexle3lem 40005 mpaaeu 43139 stoweidlem35 46033 stoweidlem56 46054 stoweidlem59 46057 2arwcat 49589 |
| Copyright terms: Public domain | W3C validator |