| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > simprr3 | Structured version Visualization version GIF version | ||
| Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
| Ref | Expression |
|---|---|
| simprr3 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
| 2 | 1 | ad2antll 729 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: el2xptp0 8040 poxp2 8147 ttrcltr 9735 icodiamlt 15459 psgnunilem2 19481 srgbinom 20196 psgndiflemA 21566 haust1 23295 cnhaus 23297 isreg2 23320 llynlly 23420 restnlly 23425 llyrest 23428 llyidm 23431 nllyidm 23432 cldllycmp 23438 txlly 23579 txnlly 23580 pthaus 23581 txhaus 23590 txkgen 23595 xkohaus 23596 xkococnlem 23602 cmetcaulem 25245 itg2add 25717 ulmdvlem3 26368 nosupprefixmo 27669 noinfprefixmo 27670 nosupno 27672 noinfno 27687 etasslt 27782 scutbdaybnd 27784 scutbdaybnd2 27785 addsproplem6 27938 negsproplem6 27996 mulsproplem13 28088 mulsproplem14 28089 mulsprop 28090 ax5seglem6 28918 fusgrfis 29314 wwlksnextfun 29885 umgr2wlkon 29937 connpconn 35262 cvmlift3lem2 35347 cvmlift3lem8 35353 ifscgr 36067 broutsideof3 36149 unblimceq0 36530 paddasslem10 39853 lhpexle2lem 40033 lhpexle3lem 40035 mpaaeu 43141 stoweidlem35 46031 stoweidlem56 46052 stoweidlem59 46055 2arwcat 49444 |
| Copyright terms: Public domain | W3C validator |