![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simprr3 | Structured version Visualization version GIF version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.) |
Ref | Expression |
---|---|
simprr3 | ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1138 | . 2 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜒) | |
2 | 1 | ad2antll 728 | 1 ⊢ ((𝜏 ∧ (𝜃 ∧ (𝜑 ∧ 𝜓 ∧ 𝜒))) → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: el2xptp0 8077 poxp2 8184 ttrcltr 9785 icodiamlt 15484 psgnunilem2 19537 srgbinom 20258 psgndiflemA 21642 haust1 23381 cnhaus 23383 isreg2 23406 llynlly 23506 restnlly 23511 llyrest 23514 llyidm 23517 nllyidm 23518 cldllycmp 23524 txlly 23665 txnlly 23666 pthaus 23667 txhaus 23676 txkgen 23681 xkohaus 23682 xkococnlem 23688 cmetcaulem 25341 itg2add 25814 ulmdvlem3 26463 nosupprefixmo 27763 noinfprefixmo 27764 nosupno 27766 noinfno 27781 etasslt 27876 scutbdaybnd 27878 scutbdaybnd2 27879 addsproplem6 28025 negsproplem6 28083 mulsproplem13 28172 mulsproplem14 28173 mulsprop 28174 ax5seglem6 28967 fusgrfis 29365 wwlksnextfun 29931 umgr2wlkon 29983 connpconn 35203 cvmlift3lem2 35288 cvmlift3lem8 35294 ifscgr 36008 broutsideof3 36090 unblimceq0 36473 paddasslem10 39786 lhpexle2lem 39966 lhpexle3lem 39968 mpaaeu 43107 stoweidlem35 45956 stoweidlem56 45977 stoweidlem59 45980 |
Copyright terms: Public domain | W3C validator |