MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  simprr3 Structured version   Visualization version   GIF version

Theorem simprr3 1224
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) (Proof shortened by Wolf Lammen, 23-Jun-2022.)
Assertion
Ref Expression
simprr3 ((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜒)

Proof of Theorem simprr3
StepHypRef Expression
1 simp3 1138 . 2 ((𝜑𝜓𝜒) → 𝜒)
21ad2antll 729 1 ((𝜏 ∧ (𝜃 ∧ (𝜑𝜓𝜒))) → 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  el2xptp0  8018  poxp2  8125  ttrcltr  9676  icodiamlt  15411  psgnunilem2  19432  srgbinom  20147  psgndiflemA  21517  haust1  23246  cnhaus  23248  isreg2  23271  llynlly  23371  restnlly  23376  llyrest  23379  llyidm  23382  nllyidm  23383  cldllycmp  23389  txlly  23530  txnlly  23531  pthaus  23532  txhaus  23541  txkgen  23546  xkohaus  23547  xkococnlem  23553  cmetcaulem  25195  itg2add  25667  ulmdvlem3  26318  nosupprefixmo  27619  noinfprefixmo  27620  nosupno  27622  noinfno  27637  etasslt  27732  scutbdaybnd  27734  scutbdaybnd2  27735  addsproplem6  27888  negsproplem6  27946  mulsproplem13  28038  mulsproplem14  28039  mulsprop  28040  ax5seglem6  28868  fusgrfis  29264  wwlksnextfun  29835  umgr2wlkon  29887  connpconn  35229  cvmlift3lem2  35314  cvmlift3lem8  35320  ifscgr  36039  broutsideof3  36121  unblimceq0  36502  paddasslem10  39830  lhpexle2lem  40010  lhpexle3lem  40012  mpaaeu  43146  stoweidlem35  46040  stoweidlem56  46061  stoweidlem59  46064  2arwcat  49593
  Copyright terms: Public domain W3C validator