MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smores3 Structured version   Visualization version   GIF version

Theorem smores3 8273
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
smores3 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → Smo (𝐴𝐶))

Proof of Theorem smores3
StepHypRef Expression
1 dmres 5960 . . . . . 6 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
2 incom 4156 . . . . . 6 (𝐵 ∩ dom 𝐴) = (dom 𝐴𝐵)
31, 2eqtri 2754 . . . . 5 dom (𝐴𝐵) = (dom 𝐴𝐵)
43eleq2i 2823 . . . 4 (𝐶 ∈ dom (𝐴𝐵) ↔ 𝐶 ∈ (dom 𝐴𝐵))
5 smores 8272 . . . 4 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ dom (𝐴𝐵)) → Smo ((𝐴𝐵) ↾ 𝐶))
64, 5sylan2br 595 . . 3 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵)) → Smo ((𝐴𝐵) ↾ 𝐶))
763adant3 1132 . 2 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → Smo ((𝐴𝐵) ↾ 𝐶))
8 elinel2 4149 . . . . 5 (𝐶 ∈ (dom 𝐴𝐵) → 𝐶𝐵)
9 ordelss 6322 . . . . . 6 ((Ord 𝐵𝐶𝐵) → 𝐶𝐵)
109ancoms 458 . . . . 5 ((𝐶𝐵 ∧ Ord 𝐵) → 𝐶𝐵)
118, 10sylan 580 . . . 4 ((𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → 𝐶𝐵)
12113adant1 1130 . . 3 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → 𝐶𝐵)
13 resabs1 5954 . . 3 (𝐶𝐵 → ((𝐴𝐵) ↾ 𝐶) = (𝐴𝐶))
14 smoeq 8270 . . 3 (((𝐴𝐵) ↾ 𝐶) = (𝐴𝐶) → (Smo ((𝐴𝐵) ↾ 𝐶) ↔ Smo (𝐴𝐶)))
1512, 13, 143syl 18 . 2 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → (Smo ((𝐴𝐵) ↾ 𝐶) ↔ Smo (𝐴𝐶)))
167, 15mpbid 232 1 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → Smo (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  w3a 1086   = wceq 1541  wcel 2111  cin 3896  wss 3897  dom cdm 5614  cres 5616  Ord word 6305  Smo wsmo 8265
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-tr 5197  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ord 6309  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489  df-smo 8266
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator