![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smores3 | Structured version Visualization version GIF version |
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
smores3 | ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Smo (𝐴 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 5996 | . . . . . 6 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | |
2 | incom 4196 | . . . . . 6 ⊢ (𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ 𝐵) | |
3 | 1, 2 | eqtri 2754 | . . . . 5 ⊢ dom (𝐴 ↾ 𝐵) = (dom 𝐴 ∩ 𝐵) |
4 | 3 | eleq2i 2819 | . . . 4 ⊢ (𝐶 ∈ dom (𝐴 ↾ 𝐵) ↔ 𝐶 ∈ (dom 𝐴 ∩ 𝐵)) |
5 | smores 8350 | . . . 4 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ dom (𝐴 ↾ 𝐵)) → Smo ((𝐴 ↾ 𝐵) ↾ 𝐶)) | |
6 | 4, 5 | sylan2br 594 | . . 3 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵)) → Smo ((𝐴 ↾ 𝐵) ↾ 𝐶)) |
7 | 6 | 3adant3 1129 | . 2 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Smo ((𝐴 ↾ 𝐵) ↾ 𝐶)) |
8 | elinel2 4191 | . . . . 5 ⊢ (𝐶 ∈ (dom 𝐴 ∩ 𝐵) → 𝐶 ∈ 𝐵) | |
9 | ordelss 6373 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ 𝐶 ∈ 𝐵) → 𝐶 ⊆ 𝐵) | |
10 | 9 | ancoms 458 | . . . . 5 ⊢ ((𝐶 ∈ 𝐵 ∧ Ord 𝐵) → 𝐶 ⊆ 𝐵) |
11 | 8, 10 | sylan 579 | . . . 4 ⊢ ((𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → 𝐶 ⊆ 𝐵) |
12 | 11 | 3adant1 1127 | . . 3 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → 𝐶 ⊆ 𝐵) |
13 | resabs1 6004 | . . 3 ⊢ (𝐶 ⊆ 𝐵 → ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐶)) | |
14 | smoeq 8348 | . . 3 ⊢ (((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐶) → (Smo ((𝐴 ↾ 𝐵) ↾ 𝐶) ↔ Smo (𝐴 ↾ 𝐶))) | |
15 | 12, 13, 14 | 3syl 18 | . 2 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → (Smo ((𝐴 ↾ 𝐵) ↾ 𝐶) ↔ Smo (𝐴 ↾ 𝐶))) |
16 | 7, 15 | mpbid 231 | 1 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Smo (𝐴 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∩ cin 3942 ⊆ wss 3943 dom cdm 5669 ↾ cres 5671 Ord word 6356 Smo wsmo 8343 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-tr 5259 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ord 6360 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-fv 6544 df-smo 8344 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |