![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smores3 | Structured version Visualization version GIF version |
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
smores3 | ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Smo (𝐴 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 6032 | . . . . . 6 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | |
2 | incom 4217 | . . . . . 6 ⊢ (𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ 𝐵) | |
3 | 1, 2 | eqtri 2763 | . . . . 5 ⊢ dom (𝐴 ↾ 𝐵) = (dom 𝐴 ∩ 𝐵) |
4 | 3 | eleq2i 2831 | . . . 4 ⊢ (𝐶 ∈ dom (𝐴 ↾ 𝐵) ↔ 𝐶 ∈ (dom 𝐴 ∩ 𝐵)) |
5 | smores 8391 | . . . 4 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ dom (𝐴 ↾ 𝐵)) → Smo ((𝐴 ↾ 𝐵) ↾ 𝐶)) | |
6 | 4, 5 | sylan2br 595 | . . 3 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵)) → Smo ((𝐴 ↾ 𝐵) ↾ 𝐶)) |
7 | 6 | 3adant3 1131 | . 2 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Smo ((𝐴 ↾ 𝐵) ↾ 𝐶)) |
8 | elinel2 4212 | . . . . 5 ⊢ (𝐶 ∈ (dom 𝐴 ∩ 𝐵) → 𝐶 ∈ 𝐵) | |
9 | ordelss 6402 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ 𝐶 ∈ 𝐵) → 𝐶 ⊆ 𝐵) | |
10 | 9 | ancoms 458 | . . . . 5 ⊢ ((𝐶 ∈ 𝐵 ∧ Ord 𝐵) → 𝐶 ⊆ 𝐵) |
11 | 8, 10 | sylan 580 | . . . 4 ⊢ ((𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → 𝐶 ⊆ 𝐵) |
12 | 11 | 3adant1 1129 | . . 3 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → 𝐶 ⊆ 𝐵) |
13 | resabs1 6027 | . . 3 ⊢ (𝐶 ⊆ 𝐵 → ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐶)) | |
14 | smoeq 8389 | . . 3 ⊢ (((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐶) → (Smo ((𝐴 ↾ 𝐵) ↾ 𝐶) ↔ Smo (𝐴 ↾ 𝐶))) | |
15 | 12, 13, 14 | 3syl 18 | . 2 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → (Smo ((𝐴 ↾ 𝐵) ↾ 𝐶) ↔ Smo (𝐴 ↾ 𝐶))) |
16 | 7, 15 | mpbid 232 | 1 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Smo (𝐴 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 ⊆ wss 3963 dom cdm 5689 ↾ cres 5691 Ord word 6385 Smo wsmo 8384 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ord 6389 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-fv 6571 df-smo 8385 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |