![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > smores3 | Structured version Visualization version GIF version |
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.) |
Ref | Expression |
---|---|
smores3 | ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Smo (𝐴 ↾ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmres 5748 | . . . . . 6 ⊢ dom (𝐴 ↾ 𝐵) = (𝐵 ∩ dom 𝐴) | |
2 | incom 4094 | . . . . . 6 ⊢ (𝐵 ∩ dom 𝐴) = (dom 𝐴 ∩ 𝐵) | |
3 | 1, 2 | eqtri 2817 | . . . . 5 ⊢ dom (𝐴 ↾ 𝐵) = (dom 𝐴 ∩ 𝐵) |
4 | 3 | eleq2i 2872 | . . . 4 ⊢ (𝐶 ∈ dom (𝐴 ↾ 𝐵) ↔ 𝐶 ∈ (dom 𝐴 ∩ 𝐵)) |
5 | smores 7832 | . . . 4 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ dom (𝐴 ↾ 𝐵)) → Smo ((𝐴 ↾ 𝐵) ↾ 𝐶)) | |
6 | 4, 5 | sylan2br 594 | . . 3 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵)) → Smo ((𝐴 ↾ 𝐵) ↾ 𝐶)) |
7 | 6 | 3adant3 1123 | . 2 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Smo ((𝐴 ↾ 𝐵) ↾ 𝐶)) |
8 | elinel2 4089 | . . . . 5 ⊢ (𝐶 ∈ (dom 𝐴 ∩ 𝐵) → 𝐶 ∈ 𝐵) | |
9 | ordelss 6074 | . . . . . 6 ⊢ ((Ord 𝐵 ∧ 𝐶 ∈ 𝐵) → 𝐶 ⊆ 𝐵) | |
10 | 9 | ancoms 459 | . . . . 5 ⊢ ((𝐶 ∈ 𝐵 ∧ Ord 𝐵) → 𝐶 ⊆ 𝐵) |
11 | 8, 10 | sylan 580 | . . . 4 ⊢ ((𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → 𝐶 ⊆ 𝐵) |
12 | 11 | 3adant1 1121 | . . 3 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → 𝐶 ⊆ 𝐵) |
13 | resabs1 5756 | . . 3 ⊢ (𝐶 ⊆ 𝐵 → ((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐶)) | |
14 | smoeq 7830 | . . 3 ⊢ (((𝐴 ↾ 𝐵) ↾ 𝐶) = (𝐴 ↾ 𝐶) → (Smo ((𝐴 ↾ 𝐵) ↾ 𝐶) ↔ Smo (𝐴 ↾ 𝐶))) | |
15 | 12, 13, 14 | 3syl 18 | . 2 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → (Smo ((𝐴 ↾ 𝐵) ↾ 𝐶) ↔ Smo (𝐴 ↾ 𝐶))) |
16 | 7, 15 | mpbid 233 | 1 ⊢ ((Smo (𝐴 ↾ 𝐵) ∧ 𝐶 ∈ (dom 𝐴 ∩ 𝐵) ∧ Ord 𝐵) → Smo (𝐴 ↾ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 207 ∧ w3a 1078 = wceq 1520 ∈ wcel 2079 ∩ cin 3853 ⊆ wss 3854 dom cdm 5435 ↾ cres 5437 Ord word 6057 Smo wsmo 7825 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1775 ax-4 1789 ax-5 1886 ax-6 1945 ax-7 1990 ax-8 2081 ax-9 2089 ax-10 2110 ax-11 2124 ax-12 2139 ax-13 2342 ax-ext 2767 ax-sep 5088 ax-nul 5095 ax-pr 5214 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1080 df-tru 1523 df-ex 1760 df-nf 1764 df-sb 2041 df-mo 2574 df-eu 2610 df-clab 2774 df-cleq 2786 df-clel 2861 df-nfc 2933 df-ne 2983 df-ral 3108 df-rex 3109 df-rab 3112 df-v 3434 df-dif 3857 df-un 3859 df-in 3861 df-ss 3869 df-nul 4207 df-if 4376 df-sn 4467 df-pr 4469 df-op 4473 df-uni 4740 df-br 4957 df-opab 5019 df-tr 5058 df-eprel 5345 df-po 5354 df-so 5355 df-fr 5394 df-we 5396 df-xp 5441 df-rel 5442 df-cnv 5443 df-co 5444 df-dm 5445 df-rn 5446 df-res 5447 df-ord 6061 df-iota 6181 df-fun 6219 df-fn 6220 df-f 6221 df-fv 6225 df-smo 7826 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |