MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smores3 Structured version   Visualization version   GIF version

Theorem smores3 7833
Description: A strictly monotone function restricted to an ordinal remains strictly monotone. (Contributed by Andrew Salmon, 19-Nov-2011.)
Assertion
Ref Expression
smores3 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → Smo (𝐴𝐶))

Proof of Theorem smores3
StepHypRef Expression
1 dmres 5748 . . . . . 6 dom (𝐴𝐵) = (𝐵 ∩ dom 𝐴)
2 incom 4094 . . . . . 6 (𝐵 ∩ dom 𝐴) = (dom 𝐴𝐵)
31, 2eqtri 2817 . . . . 5 dom (𝐴𝐵) = (dom 𝐴𝐵)
43eleq2i 2872 . . . 4 (𝐶 ∈ dom (𝐴𝐵) ↔ 𝐶 ∈ (dom 𝐴𝐵))
5 smores 7832 . . . 4 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ dom (𝐴𝐵)) → Smo ((𝐴𝐵) ↾ 𝐶))
64, 5sylan2br 594 . . 3 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵)) → Smo ((𝐴𝐵) ↾ 𝐶))
763adant3 1123 . 2 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → Smo ((𝐴𝐵) ↾ 𝐶))
8 elinel2 4089 . . . . 5 (𝐶 ∈ (dom 𝐴𝐵) → 𝐶𝐵)
9 ordelss 6074 . . . . . 6 ((Ord 𝐵𝐶𝐵) → 𝐶𝐵)
109ancoms 459 . . . . 5 ((𝐶𝐵 ∧ Ord 𝐵) → 𝐶𝐵)
118, 10sylan 580 . . . 4 ((𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → 𝐶𝐵)
12113adant1 1121 . . 3 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → 𝐶𝐵)
13 resabs1 5756 . . 3 (𝐶𝐵 → ((𝐴𝐵) ↾ 𝐶) = (𝐴𝐶))
14 smoeq 7830 . . 3 (((𝐴𝐵) ↾ 𝐶) = (𝐴𝐶) → (Smo ((𝐴𝐵) ↾ 𝐶) ↔ Smo (𝐴𝐶)))
1512, 13, 143syl 18 . 2 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → (Smo ((𝐴𝐵) ↾ 𝐶) ↔ Smo (𝐴𝐶)))
167, 15mpbid 233 1 ((Smo (𝐴𝐵) ∧ 𝐶 ∈ (dom 𝐴𝐵) ∧ Ord 𝐵) → Smo (𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  w3a 1078   = wceq 1520  wcel 2079  cin 3853  wss 3854  dom cdm 5435  cres 5437  Ord word 6057  Smo wsmo 7825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1775  ax-4 1789  ax-5 1886  ax-6 1945  ax-7 1990  ax-8 2081  ax-9 2089  ax-10 2110  ax-11 2124  ax-12 2139  ax-13 2342  ax-ext 2767  ax-sep 5088  ax-nul 5095  ax-pr 5214
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3an 1080  df-tru 1523  df-ex 1760  df-nf 1764  df-sb 2041  df-mo 2574  df-eu 2610  df-clab 2774  df-cleq 2786  df-clel 2861  df-nfc 2933  df-ne 2983  df-ral 3108  df-rex 3109  df-rab 3112  df-v 3434  df-dif 3857  df-un 3859  df-in 3861  df-ss 3869  df-nul 4207  df-if 4376  df-sn 4467  df-pr 4469  df-op 4473  df-uni 4740  df-br 4957  df-opab 5019  df-tr 5058  df-eprel 5345  df-po 5354  df-so 5355  df-fr 5394  df-we 5396  df-xp 5441  df-rel 5442  df-cnv 5443  df-co 5444  df-dm 5445  df-rn 5446  df-res 5447  df-ord 6061  df-iota 6181  df-fun 6219  df-fn 6220  df-f 6221  df-fv 6225  df-smo 7826
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator